Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Frequency-dependent viabilities of Drosophila pseudoobscura karyotypes
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1986

Frequency-dependent viabilities of Drosophila pseudoobscura karyotypes

  • Wyatt W Anderson1,
  • Jonathan Arnold1,
  • Scott A Sammons1 &
  • …
  • Darrell G Yardley2 

Heredity volume 56, pages 7–17 (1986)Cite this article

  • 495 Accesses

  • 18 Citations

  • Metrics details

Abstract

The viabilities between egg and adult life stages of Drosophila pseudoobscura karyotypes were studied at low, intermediate, and high frequencies. The viabilities of pairs of karyotypes were compared at each frequency and the viabilities of the three karyotypes, at one combination of frequencies. Eggs were counted into vials and samples taken of the adults emerging after viability selection. ST and CH gene arrangements of the third chromosome carrying different amylase alleles were used, and the karyotypes of adult flies were scored by gel electrophoresis. A statistical method related to the loglinear model was developed for estimating viabilities. This method takes account of the additional variability between replicates common in experiments of this kind and allows testing of nested hypotheses about the mechanism of selection. The viabilities of the homokaryotypes relative to the heterokaryotype were significantly higher at the low homokaryotypic frequency than at the higher ones. These viabilities do not show a consistent heterozygote advantage. This pattern of frequency-dependent viabilities will lead to a protected polymorphism for the gene arrangements, even in the absence of heterozygote advantage.

Similar content being viewed by others

High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis

Article Open access 08 January 2021

Haplotyping-based preimplantation genetic testing reveals parent-of-origin specific mechanisms of aneuploidy formation

Article Open access 07 October 2021

Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

Article Open access 14 November 2022

Article PDF

References

  • Anderson, W W. 1969. Selection in experimental populations. I. Lethal genes. Genetics, 62, 653–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, W W, and Brown, C J. 1984. A test for rare male mating advantage with Drosophila pseudoobscura karyotypes. Genetics, 107, 577–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, W W, Levine, L, Olvera, O, Powell, J R, De La Rosa, M E, Salceda, V M, Gaso, M I, and Guzman, J. 1979. Evidence for selection by male mating success in natural populations of Drosophila pseudoobscura. Proc Nat Acad Sci USA, 76, 1519–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, W W, Oshima, C, Watanabe, T, Dobzhansky, T H, and Pavlovsky, O. 1968. Genetics of natural populations. XXXIX. A test of the possible influence of two insecticides on the chromosomal polymorphism in Drosophila pseudoobscura. Genetics, 58, 423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, W W, and Watanabe, T K. 1974. Selection by fertility in Drosophila pseudoobscura. Genetics, 77, 559–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anscombe, F J, and Glynn, W J. 1983. Distribution of the kurtosis b2 for normal samples. Biometrika 70, 227–234.

    Google Scholar 

  • Arnold, J. 1981. Statistics of natural populations. 1: Estimating an allele probability in cryptic fathers with a fixed number of offspring. Biometrics, 37, 495–504.

    Article  Google Scholar 

  • Arnold, J, and Morrison, M L. 1985. Statistics of natural populations. II: Estimating an allele probability in families descended from cryptic mothers. Genetics 109, 785–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala, F J, and Campbell, C A. 1974. Frequency-dependent selection. Annual Rev Ecol Syst, 5, 115–138.

    Article  Google Scholar 

  • Brier, S S. 1980. Analysis of contingency tables under cluster sampling. Biometrika 67, 591–596.

    Article  Google Scholar 

  • Bundgaard, J, and Christiansen, F B. 1972. Dynamics of polymorphisms: I. Selection components in an experimental population of Drosophila malanogaster. Genetics, 71, 439–460.

    CAS  PubMed  Google Scholar 

  • Clark, A G, and Do Ane, W W. 1984. Interactions between the amylase and adipose chromosomal regions of Drosophila melanogaster. Evolution, 38, 957–982.

    Article  PubMed  Google Scholar 

  • Clark, A G, and Feldman, M W. 1981. Density-dependent fertility selection in experimental populations of Drosophila melanogaster. Genetics, 98, 849–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, B C. 1962. Balanced polymorphism and diversity of sympatric species. In Nichols, D. (ed.) Taxonomy and Geography, Systematics Association Publication No 4.

  • Clegg, M T, and Allard, R W. 1973. Viability versus fecundity selection in the slender wild oat, Avena barbata L. Science, 181, 667–668.

    Article  CAS  PubMed  Google Scholar 

  • Cornell, J. 1973. Experiments with mixtures: a review. Tech-nometrics, 15, 437–455.

    Google Scholar 

  • Cornell, J. 1979. Experiments with mixtures: an update and bibliography. Technometrics, 21, 95–106.

    Article  Google Scholar 

  • Dawood, M M, and Strickberger, M W. 1969. The effect of larval interaction on viability in Drosophila melanogaster. III. Effects of biotic residues. Genetics, 63, 213–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T H. 1943. Genetics of natural populations. IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics, 28, 162–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T H. 1944. Chromosomal races in Drosophila pseudoobscura and its relatives. In Dobzhansky, Th. and Epling, C. Contributions to the Genetics, Taxonomy, and Ecology of Drosophila Pseudoobscura and Its Relatives, Carnegie Institution of Washington Publication, 554.

    Google Scholar 

  • Dobzhansky, T H. 1947a. Adaptive changes induced by natural selection in wild populations of Drosophila. Evolution, 1, 1–16.

    Article  Google Scholar 

  • Dobzhansky, T H. 1947b. Genetics of natural populations. XIV. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics, 32, 142–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T H. 1951. Genetics and the Origin of Species, Third Edition. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T H. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T H, Ayala, F J, Stebbins, G L, and Valentine, J W. 1977. Evolution. W. H. Freeman, San Francisco.

    Google Scholar 

  • Dobzhansky, T H, and Levene, H. 1948. Genetics of natural populations. XVII. Proof of operation of natural selection in wild populations of Drosophila pseudoobscura. Genetics, 33, 537–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrman, L, Spassky, B, Pavlovsky, O, and Dobzhansky, T H. 1965. Sexual selection, geotaxis, and chromosomal polymorphism in experimental populations of Drosophila pseudoobscura. Evolution, 19, 337–346.

    Article  Google Scholar 

  • Fienberg, S E. 1980. The Analysis of Cross-Classified Categorical Data, 2nd Edition, MIT Press, Cambridge.

    Google Scholar 

  • Fisher, R A. 1922. On the dominance ratio. Proc Roy Soc Edinburgh, 42, 321–341.

    Article  Google Scholar 

  • Gromko, M H. 1977. What is frequency-dependent selection? Evolution, 31, 438–442.

    Article  PubMed  Google Scholar 

  • Haldane, J B S. 1924. A mathematical theory of natural and artificial selection. Part 1. Trans Cambridge Phil Soc, 23, 19–41.

    Google Scholar 

  • Haldane, J B S. 1956. The estimation of viabilities. J Genetics, 54, 294–296.

    Article  Google Scholar 

  • Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available. Amer Nat, 87, 331–333.

    Article  Google Scholar 

  • Levene, H, Pavlovsky, O, and Dobzhansky, T H. 1954. Interaction of the adaptive values in polymorphic experimental populations of Drosophila pseudoobscura. Evolution, 8, 335–349.

    Article  Google Scholar 

  • Levin, B, and Reeds, J. 1977. Compound multinomial likelihood functions are unimodal: proof of a conjecture of I. J. Good, Ann of Statist, 5, 79–87.

    Article  Google Scholar 

  • Lewontin, R C. 1955. The effects of population density and composition on viability in Drosophila melanogaster. Evolution, 9, 27–41.

    Article  Google Scholar 

  • Nunney, L. 1983. Sex differences in larval competition in Drosophila melanogaster: the testing of a competition model and its relevance to frequency-dependent selection. Amer Nat, 121, 67–93.

    Article  Google Scholar 

  • Petit, C, and Ehrman, L. 1969. Sexual selection in Drosophila. In Dobzhansky, Th., Hecht, M. K. and Steere, W. C. (eds.), Evolutionary Biology, 7, Plenum Press, New York.

    Google Scholar 

  • Polivanov, S, and Anderson, W W. 1969. Selection in experimental populations: II. Components of selection and their fluctuations in two populations of Drosophila melanogaster. Genetics, 63, 919–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prout, T. 1968. Sufficient conditions for multiple niche polymorphism. Amer Nat, 102, 493–496.

    Article  Google Scholar 

  • Prout, T. 1971. The relation between fitness components and population prediction in Drosophila. I: The estimation of fitness components. Genetics 68, 127–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salceda, V M, and Anderson, W W. 1985. Rare male mating advantage in a natural population of Drosophila. Proc Natl Acad Sci USA (in press).

  • Snedecor, G W, and Cochran, W G. 1980. Statistical Methods, 7th Edition. Iowa State University Press, Ames.

    Google Scholar 

  • Snyder, T P, and Ayala, F J. 1979. Frequency-dependent selection at the PGM-1 locus of Drosophila pseudoobscura. Genetics, 92, 995–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tosic, M, and Ayala, F J. 1981. Density and frequency-dependent selection at the Mdh-2 locus in Drosophila pseudoobscura. Genetics, 97, 679–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitten, T. 1973. Orthogonal-polynomial contoured trend-surface maps for irregularly-spaced data, Comp App, 1, 171–192.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S, and Dobzhansky, T H. 1946. Genetics of natural populations. XII. Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics, 31, 125–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yardley, D G, Anderson, W W, and Schaffer, H E. 1977. Gene frequency changes at the a-amylase locus in experimental populations of Drosophila pseudoobscura. Genetics, 87, 357–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimaru, H, and Mukai, T. 1979. Lack of experimental evidence for frequency-dependent selection at the alcohol dehydrogenase locus in Drosophila melanogaster. Proc Natl Acad Sci USA, 76, 876–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA

    Wyatt W Anderson, Jonathan Arnold & Scott A Sammons

  2. Department of Zoology, Clemson University, Clemson, 29631, South Carolina, USA

    Darrell G Yardley

Authors
  1. Wyatt W Anderson
    View author publications

    Search author on:PubMed Google Scholar

  2. Jonathan Arnold
    View author publications

    Search author on:PubMed Google Scholar

  3. Scott A Sammons
    View author publications

    Search author on:PubMed Google Scholar

  4. Darrell G Yardley
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, W., Arnold, J., Sammons, S. et al. Frequency-dependent viabilities of Drosophila pseudoobscura karyotypes. Heredity 56, 7–17 (1986). https://doi.org/10.1038/hdy.1986.2

Download citation

  • Received: 03 December 1984

  • Issue date: 01 February 1986

  • DOI: https://doi.org/10.1038/hdy.1986.2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • The Yank of Dobzhansky’s Bequest

    • José M. Álvarez-Castro
    • Örjan Carlborg

    Evolutionary Biology (2008)

  • Resource subdivision and the advantage of genotypic diversity in Drosophila

    • Mauro Santos

    Heredity (1997)

  • Unmasking frequency-dependent selection in tri-cultures of Drosophila melanogaster

    • J. C. Adell
    • V. Molina
    • J. L. Mensua

    Genetica (1989)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited