Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Cytological, linkage and insecticide studies on a genetic sexing line in Anopheles stephensi Liston
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1987

Cytological, linkage and insecticide studies on a genetic sexing line in Anopheles stephensi Liston

  • A S Robinson1 &
  • Pham Van Lap1 nAff2 

Heredity volume 58, pages 95–101 (1987)Cite this article

  • 581 Accesses

  • 4 Citations

  • 3 Altmetric

  • Metrics details

Abstract

T(Y − D1)35 is a genetic sexing line in Anopheles stephensi (2n = 6; XX♀, XY♂) based on the translocation of the dieldrin resistance gene to the male determining chromosome. A cytological analysis demonstrated the presence of a 3 chromosome multiple translocation in which part of the Y chromosome formed the differential segment. An analysis of egg karyotypes enabled the segregation behaviour of the complex to be determined and only alternate and adjacent I segregations could be demonstrated. The breakpoint of the translocation in chromosome 3 was located using polytene salivary gland preparations. Linkage studies using chromosome three markers revealed contrasting effects of the translocation on recombination in this chromosome. An insecticide treatment method, based on the exposure of newly emerged adults, was developed enabling large numbers of individuals to be treated for the production of only males.

Similar content being viewed by others

Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod

Article 16 July 2021

Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule

Article Open access 04 February 2021

Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives

Article Open access 11 June 2024

Article PDF

References

  • Ahktar, K, Sakai, R K, and Baker, R H. 1982. Linkage group III in the malaria vector, Anopheles stephensi. J Hered, 73, 473–475.

    Google Scholar 

  • Bailey, D L, Lowe, R E, Dame, D A, and Seawright, J A. 1980. Mass rearing the genetically altered MACHO strain of Anopheles albaminus Wiedemann. Amer J Trop Med Hyg, 29, 141–149.

    Article  CAS  Google Scholar 

  • Baker, R H, Sakai, R K, and Raana, K. 1981. Genetic sexing for a mosquito sterile-male release. J Hered, 12, 216–218.

    Article  Google Scholar 

  • Curtis, C F. 1978. Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull WHO, 56, 453–454.

    CAS  PubMed  Google Scholar 

  • Curtis, C F, and Robinson, A S. 1971. Computer simulation of the use of double translocations for pest control. Genetics, 69, 97–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis, C F, Akiyama, J, and Davidson, G. 1976. A genetic sexing system in Anopheles gambiae species A. Mosq News, 36, 492–498.

    Google Scholar 

  • Foster, G G, Whitten, M S, Vogt, W G, Woodburn, T L, and Arnold, S T. 1978. Larval release method for genetic control of the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) Bull ent Res, 68, 75–83.

    Article  Google Scholar 

  • French, W L, Baker, R H, and Kitzmiller, J B. 1962. Preparation of mosquito chromosomes. Mosq News, 22, 377–383.

    Google Scholar 

  • Heemert, C Van, Toan, T A, Robinson, A S, and Feld Mann, A. 1983. Induction and isolation of translocations in Anopheles stephensi. Mosq News, 43, 480–484.

    Google Scholar 

  • Lines, J, and Curtis, C F. 1985. Genetic sexing systems in Anopheles arabiensis Patton. J econ Entomol, 78, 848–851.

    Article  CAS  Google Scholar 

  • Malcolm, C. Genetic analysis of reduced susceptibility to knockdown by permethrin and its relationship to DDT resistance in larvae of Anopheles stephensi. Bull Ent Res (submitted),

  • McDonald, P T, and Asman, S M. 1982. A genetic sexing strain based on malathion resistance for Culex tarsalis. Mosq News, 42, 531–536.

    Google Scholar 

  • McDonald, P T, and Rai, K S. 1970. Aedes aegypti: Origin of a “new” chromosome from a double translocation heterozygote. Science, 168, 1229–1230.

    Article  CAS  Google Scholar 

  • Parvez, S D, Akhtar, K, and Sakai, R K. 1985. Two new mutations and a linkage map of Anopheles stephensi. J Hered, 76, 205–207.

    Article  CAS  Google Scholar 

  • Roberts, P A. 1976. The genetics of chromosome aberration. Ashburner, M. and Novitski, E. (eds.), In The Genetics and Biology of Drosophila, 1a, Academic Press Inc. (London) Ltd, p. 486.

    Google Scholar 

  • Robinson, A S. 1983. Sex-ratio manipulation in relation to insect pest control. Annu Rev Genetics, 17, 191–214.

    Article  CAS  Google Scholar 

  • Robinson, A S. 1986. Genetic sexing in Anopheles stephensi using dieldrin resistance. J Amer Mosq Cont Assoc, 2, 93–95.

    CAS  Google Scholar 

  • Robinson, A S, Malcolm, C, Mali, P, and Schelling, G. 1986. Breakpoint distribution in male-linked translocations in Anopheles stephensi Liston. J Hered In press.

  • Rowland, M. 1985. Location of the gene for malathion resistance in Anopheles stephensi (Diptera: Culicidae) for Pakistan. J Med Entomol, 22, 373–380.

    Article  CAS  Google Scholar 

  • Sakai, R K, and Mahmood, F. 1985. Homozygous chromosomal aberrations in Anopheles stephensi, J Hered, 76, 230–236.

    Article  CAS  Google Scholar 

  • Sakai, R K, Baker, R H, Raana, K, and Hassan, M. 1979. Crossing-over in the long arm of the X and Y chromosomes in Anopheles culicifacies. Chromosoma, 14, 204–218.

    Google Scholar 

  • Sakai, R K, Mahmood, F, Akhtar, K, Dubash, C T, and Baker, R H. 1983. Induced chromosomal aberrations and linkage group-chromosome correlation in Anopheles stephensi. J Hered, 14, 232–238.

    Article  Google Scholar 

  • Seawright, J A, Kaiser, P E, Dame, D A, and Lofgren, C S. 1978. Genetic method for the preferential elimination of females of Anopheles albimanus. Science, 220, 1303–1304.

    Article  Google Scholar 

  • Sharma, G P, Parshad, R, Narang, S L, and Kitzmiller, J B. 1969. The salvary chromosomes of Anopheles stephensi. J Med Entomol, 6, 68–71.

    Article  CAS  Google Scholar 

  • Vosselman, L, and Van Heemert, C. 1980. Meiotic disjunction and embryonic lethality in sex-linked double-translocation heterozygous males of the onion fly, Hylemya antiqua (Meigen). Theoret appl Genet, 58, 161–167.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. Pham Van Lap

    Present address: Department of Genetics, Univ. of Hanoi, Vietnam

Authors and Affiliations

  1. Insect Genetics Unit, Research Institute ITAL, P.O. Box 48, Wageningen, 6700 AA, The Netherlands

    A S Robinson & Pham Van Lap

Authors
  1. A S Robinson
    View author publications

    Search author on:PubMed Google Scholar

  2. Pham Van Lap
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, A., Van Lap, P. Cytological, linkage and insecticide studies on a genetic sexing line in Anopheles stephensi Liston. Heredity 58, 95–101 (1987). https://doi.org/10.1038/hdy.1987.14

Download citation

  • Received: 20 April 1986

  • Issue date: 01 February 1987

  • DOI: https://doi.org/10.1038/hdy.1987.14

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited