Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Quantitative genetics and fitness: lessons from Drosophila
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1987

Quantitative genetics and fitness: lessons from Drosophila

  • Derek A Roff1 &
  • Timothy A Mousseau1 

Heredity volume 58, pages 103–118 (1987)Cite this article

  • 4068 Accesses

  • 421 Citations

  • 3 Altmetric

  • Metrics details

Abstract

This paper examines patterns of heritability and genetic covariance between traits in the genus Drosophila. Traits are divided into the categories, morphology, behaviour, physiology and life history. Early theoretical analyses suggested that life history traits should have heritabilities that are lower than those in other categories. Variable pleiotrophy, environmental variation, mutation and niche variation may, however, maintain high heritabilities. In Drosophila the heritabilities of life history traits are lower than morphological or physiological traits but may exceed 20 per cent. The pattern of variation in the heritability of behavioural traits is similar to that of life history traits. Genetic covariance between morphological traits and between morphological and life history traits are all positive but those between life history traits have variable sign. Negative covariance between traits supports the variable pleiotropy hypothesis but other factors such as environmental heterogeneity, or mutation cannot be excluded.

Similar content being viewed by others

cis- and trans-regulatory contributions to a hierarchy of factors influencing gene expression variation

Article Open access 25 November 2024

Correlational selection in the age of genomics

Article 15 April 2021

Experimental evolution of adaptive divergence under varying degrees of gene flow

Article 11 January 2021

Article PDF

References

  • Aguadé, M, Cuello, J, Prevosti, A. 1981. Correlated responses to selection for wing length in allozyme systems of Drosophila melanogaster. Theor Appl Genet, 60, 317–327.

    PubMed  Google Scholar 

  • Andjelkovic, M, and Mavinkovic, D. 1983. Selection for copulation ability of Drosophila subobscura in the absence of light. Behav Genet, 13, 411–419.

    CAS  PubMed  Google Scholar 

  • Baptist, R, and Robertson, A. 1976. Asymmetrical responses to automatic selection for body size in Drosophila melanogaster. Theor Appl Genet, 47, 209–213.

    CAS  PubMed  Google Scholar 

  • Beardmore, J A, Lints, F, and Al-Baldawi, A L F. 1975. Parental age and heritability of sternopleural chaeta number in Drosophila melanogaster. Heredity, 34, 71–82.

    CAS  PubMed  Google Scholar 

  • Bell, G, and Koufopanou, V. 1986. The cost of reproduction. Oxford Surveys in Evolutionary Ecology, 3 (In press).

  • Berven, K A, and Gill, D E. 1983. Interpreting geographic variation in life-history traits. Amer Zool, 23, 85–97.

    Google Scholar 

  • Birley, A, and Burnes, B. 1973. Genetic variation of enzyme activity in a population of Drosophila melanogaster. Heredity, 31, 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, J C. 1962. Recurrent selection. II. An experimental study with mice and Drosophila. Genet Res, 3, 333–351.

    Google Scholar 

  • Bulmer, M G. 1971. The effect of selection on genetic variability. Am Nat, 105, 201–211.

    Google Scholar 

  • Cavalli-Sforza, L L, and Feldman, M W. 1976. Evolution of continuous variation, direct approach through joint distribution of genotypes and phenotypes. Proc Natl Acad Sci, 73, 1689–1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli-Sforza, L L, and Feldman, M W. 1978. The evolution of continuous variation. III. Joint transmission of genotype, phenotype and environment. Genetics, 90, 391–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, B. 1987. The heritability of fitness. Dahlem Workshop on Sexual Selection (In press).

  • Cheverud, J M. 1984. Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol, 110, 155–171.

    CAS  PubMed  Google Scholar 

  • Choo, J. 1975a. Genetic studies on the phototactic behavior in Drosophila melanogaster. I. Selection and genetic analysis. Jpn J Genet, 50, 205–215.

    Google Scholar 

  • Choo, J. 1975b. Genetic studies on the phototactic behavior in Drosophila melanogaster. II. Correlated response: lethal frequency and eclosion rhythm. Jpn J Genet, 50, 361–372.

    Google Scholar 

  • Choo, J K. 1975c. Genetic studies on walking behavior in Drosophila melanogaster. I. Selection and hybridization analysis. Can J Genet Cytol, 17, 535–542.

    CAS  PubMed  Google Scholar 

  • Clarke, J M, Maynard Smith, J, and Sondhi, K C. 1961. Asymmetrical response to selection for rate of development in Drosophila subobscura. Genet Res, 2, 70–81.

    Google Scholar 

  • Clayton, G A, Morris, J A, and Robertson, A. 1957. An experimental check on quantitative genetical theory. I. Short-term response to selection. J Genet, 55, 131–151.

    Google Scholar 

  • Connolly, K. 1966. Locomotor activity in Drosophila. II. Selection for active and inactive strains. Anim Behav, 14, 444–449.

    CAS  PubMed  Google Scholar 

  • Creus, M A. 1980. Interocellar bristles in Drosophila melanogaster. Metrical parameters in natural populations. Genet Pol, 21, 173–179.

    Google Scholar 

  • Deery, B J, and Parsons, P A. 1972. Ether resistance in Drosophila melanogaster. Theor Appl Genet, 42, 208–214.

    CAS  PubMed  Google Scholar 

  • Dempster, E R. 1955. Maintenance of genetic heterogeneity. Cold Spr. Harb. Symp Quant Biol, XX, 25–32.

    Google Scholar 

  • Dickerson, G E. 1955. Genetic slippage in response to selection for multiple objectives. Cold Spr. Harb. Symp Quant Biol, XX, 213–224.

    Google Scholar 

  • Dingle, H, Hegmann, J P. (eds) 1982. Evolution and Genetics of Life Histories, Springer-Verlag, New York pp. 250.

  • Dobzhansky, T, and Spassky, B. 1967. Effects of selection and migration on geotactic and phototactic behavior of Drosophila. I Proc Roy Soc Lond B, 168, 27–47.

    Google Scholar 

  • Dobzhansky, T, Spassky, B, Sved, J. 1969. Effects of selection and migration on geotactic and phototactic behaviour of Drosophila. Proc Roy Soc Lond B, 173, 191–207.

    CAS  Google Scholar 

  • Eckstrand, I A. 1981. Heritability of water-loss rate in Drosophila melanogaster. J Hered, 72, 434–436.

    Google Scholar 

  • Emlen, J M. 1980. A phenotypic model for the evolution of ecological characters. Theor Pop Biol, 17, 190–200.

    CAS  Google Scholar 

  • Falconer, D S. 1977. Some results of the Edinburgh selection experiments with mice. Pollack, E., Kempthorne, O. and Bailey, T. B. Jr. (eds), In Proceedings of the International Conference on Quantitative Genetics, Iowa State Univ. Press, Ames.

    Google Scholar 

  • Falconer, D S. 1981. Introduction to Quantitative Genetics, 2nd éd., Longman, New York.

    Google Scholar 

  • Fisher, R A. 1930. The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fogleman, J C. 1979. Oviposition site preference for substrate temperature in Drosophila melanogaster. Behav Genet, 9, 407–412.

    CAS  PubMed  Google Scholar 

  • Frahm, R R, and Kojima, K. 1966. Comparison of selection responses on body weight under divergent larval density conditions in Drosophila pseudoobscura. Genetics, 54, 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham, R, Jones, L P, and Barker, J S F. 1968. The effects of population size and selection intensity for a quantitative character in Drosophila. I. Short-term response to selection. Genet Res Camb, 12, 237–248.

    CAS  Google Scholar 

  • Fulker, D W. 1966. Mating speed in Drosophila melanogaster: A psychogenetic analysis. Science, 153, 203–205.

    CAS  PubMed  Google Scholar 

  • Gallego, A, and Lopez Fanjul, C. 1983. The number of loci affecting a quantitative trait in Drosophila melanogaster revealed by artificial selection. Genet Res, 42, 137–149.

    Google Scholar 

  • Giesel, J T, Murphy, P A, and Manlove, M N. 1982. The influence of temperature on genetic interrelationships of life—history traits in a population of Drosophila melanogaster: what tangled data sets we weave. Am Nat, 119, 464–479.

    Google Scholar 

  • Grant, B, and Mettler, L E. 1969. Disruptive and stabilizing selection on the “escape” behavior of Drosophila melanogaster. Genetics, 62, 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, P R, and Price, T D. 1981. Population variation in continuously varying traits as an ecological genetics problem. Amer Zool, 21, 795–811.

    Google Scholar 

  • Hadler, N M. 1964. Heritability and phototaxis in Drosophila melanogaster. Genetics, 50, 1269–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, W G. 1982. Predictions of response to artificial selection from new mutations. Genet Res Camb, 40, 255–278.

    Google Scholar 

  • Hirsch, J, and Boudreau, J. 1958. Studies in experimental behavior genetics I. The heritability of phototaxis in a population of Drosophila melanogaster. J Comp Physiol Psychol, 51, 647–651.

    CAS  PubMed  Google Scholar 

  • Ikeda, H, and Maruo, O. 1982. Directional selection for pulse repetition rate of the courtship sound and correlated responses occurring in several characters in Drosophila mercatorum. Jpn J Genet, 57, 241–258.

    Google Scholar 

  • Johnston, J S. 1982. Genetic variation for anemotaxis (wind-directed movement) in laboratory and wild-caught populations of Drosophila. Behav Gent, 12, 281–293.

    CAS  Google Scholar 

  • Kearsey, M J, and Barnes, B W. 1970. Variation for metrical characters in Drosophila populations. II. Natural selection. Heredity, 25, 11–21.

    CAS  PubMed  Google Scholar 

  • Kekic, V, and Marinkovic, D. 1974. Multiple-choice selection for light preference in Drosophila subobscura. Behav Genet, 4, 285–300.

    CAS  PubMed  Google Scholar 

  • Kessler, S. 1969. The genetics of Drosophila mating behavior. II. The genetic architecture of mating speed in Drosophila pseudoobscura. Genetics, 62, 421–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lande, R. 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res, 26, 221–235.

    CAS  PubMed  Google Scholar 

  • Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecology, 63, 607–615.

    Google Scholar 

  • Latter, B D H. 1964. Selection for a threshold character in Drosophila. I. An analysis of the phenotypic variance on the underlying scale. Genet Res, 5, 198–210.

    Google Scholar 

  • Latter, B D H, and Robertson, F W. 1962. The effects of inbreeding and artificial selection on reproductive fitness. Genet Res, 3, 110–138.

    Google Scholar 

  • Lee, B T O, and Parsons, P A. 1968. Selection, prediction and response. Bio Rev, 43, 139–174.

    CAS  Google Scholar 

  • Lerner, I M. 1954. Genetic homeostasis, Wiley, New York.

  • Lints, F A, Stoll, J, Grunway, G, and Lints, C V. 1979. An attempt to select for increased ongevity in Drosophila melanogaster. Gerontology, 25, 192–204.

    CAS  PubMed  Google Scholar 

  • Lopez-Fanjul, C, and Hill, W G. 1973a. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. 1. Laboratory papulations. Genet Res, 22, 51–68.

    CAS  PubMed  Google Scholar 

  • Lopez-Fanjul, C, and Hill, W G. 1973b. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. II. Wild and laboratory populations. Genet Res, 22, 69–78.

    CAS  PubMed  Google Scholar 

  • MacBean, I T, and Parsons, P A. 1960. The genotypic control of the duration of copulation in Drosophila melanogaster. Experientia, XXII, 101–102.

    Google Scholar 

  • Mackay, T F C. 1980. Genetic variance, fitness, and homeostasis in varying environments: an experimental check of the theory. Evolution, 34, 1219–1222.

    PubMed  Google Scholar 

  • Mackay, T F C. 1980. Genetic variation in varying environments. Genet Res, 37, 79–93.

    Google Scholar 

  • Manning, A. 1961. The effects of artificial selection for mating speed in Drosophila melanogaster. Anim Behav, 9, 82–92.

    Google Scholar 

  • Marcos, R. 1977. Estudio del caracter quetas interocelares en Drosophila melanogaster. Calcula de su heredabilidad, Tesina de Licenciatura, Universidad de Barcelona.

  • Markow, T A. 1979. A survey of intra-and interspecific variation for pupation height in Drosophila. Behav Genet, 9, 209–217.

    CAS  PubMed  Google Scholar 

  • Markow, T A, and Clark, A G. 1984. Correlated response to phototactic selection. Behav Genet, 14, 279–293.

    CAS  PubMed  Google Scholar 

  • Markow, T A, and Smith, W L. 1977. Genetic analysis of phototactic behavior in Drosophila simulans. Genetics, 85, 273–278.

    CAS  PubMed  Google Scholar 

  • Markow, T A, and Smith, L D. 1979. Genetics of phototactic behavior in Drosophila ananassae, a member of the melanogaster species group. Behav Genet, 9, 61–67.

    CAS  PubMed  Google Scholar 

  • Maynard Smith, J. 1959. Sex-limited inheritance of longevity in Drosophila subohscura. J Genetics, 56, 227–235.

    Google Scholar 

  • Maynard Smith, J. 1982. Evolution and the Theory of Games, Cambridge Univ. Press, New York, 224 pp.

    Google Scholar 

  • Mukai, T, Cardellino, R A, Watanabe, T K, and Crow, J F. 1974. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics, 78, 1195–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai, T, and Nagano, S. 1983. The genetic structure of natural populations of Drosophila melanogaster. XVI Excess of additive genetic variance of viability. Genetics, 105, 115–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai, T, and Yamazaki, T. 1971. The genetic structure of natural populations of Drosophila melanogaster. X. Developmental time and viability. Genetics, 69, 385–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai, T, and Yamaguchi, O. 1974. The genetic structure of natural populations of Drosophila melanogaster. XI Genetic variability in a local population. Genetics, 76, 339–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, P A, Giesel, J T, and Manlove, M N. 1983. Temperature effects on life history variations in Drosophila simulans. Evolution, 37, 1181–1192.

    CAS  PubMed  Google Scholar 

  • McDonald, J. 1979. Genetic analysis of lines selected for wing vibration in Drosophila melanogaster. Behav Genet, 9, 579–584.

    CAS  PubMed  Google Scholar 

  • O'Donald, P. 1967. On the evolution of dominance, over-dominance and balanced polymorphism. Proc Roy Soc B, 168, 216–228.

    CAS  Google Scholar 

  • Parsons, P A. 1964. A diallel cross for mating speeds in Drosophila melanogaster. Genetics, 35, 141–151.

    CAS  Google Scholar 

  • Polivanov, S. 1975. Response of Drosophila persimilis to phototactic and geotactic selection. Behav Genet, 5, 255–267.

    CAS  PubMed  Google Scholar 

  • Powell, J R, Lichtenfels, J M. 1979. Population genetics of Drosophila amylase. 1. Genetic control of tissue-specific expression in D. pseudoobscura. Genetics, 92, 603–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prevosti, A. 1967. Inversion heterozygosity and selection for wing length in Drosophila subobscura. Genet Res, 10, 81–93.

    CAS  PubMed  Google Scholar 

  • Price, G R. 1970, Selection and covariance. Nature, 227, 520–521.

    CAS  PubMed  Google Scholar 

  • Prout, T. 1962. The effects of stabilizing selection on the time of development in Drosophila melanogaster. Genet Res, 3, 364–382.

    Google Scholar 

  • Pyle, D W, and Gromko, M H. 1981. Genetic basis for repeated mating in Drosophila melanogaster. Am Nat, 117, 133–146.

    Google Scholar 

  • Pyle, D W, and Richmond, R C. 1979. Genetic basis of aristal morphology in Drosophila melanogaster and its correlation with behavior, selection for increased and decreased aristal branching. Behav Genet, 9, 297–308.

    CAS  PubMed  Google Scholar 

  • Reeve, E C R. 1960. Some genetic tests on asymmetry of sternopleural chaeta number in Drosophila. Genet Res, 1, 151–172.

    Google Scholar 

  • Reeve, E C R, and Robertson, F W. 1953. Studies in quantitative inheritance II. Analysis of a strain of Drosophila melanogaster selected for long wings. J Genet, 51, 276–316.

    Google Scholar 

  • Reeve, E C R, and Robertson, F W. 1954. Studies in quantitative inheritance VI. Sternite chaeta number in Drosophila; a metameric quantitative character. Z indukt Abstamm-u Vererbhehre, 86, 269–288.

    CAS  Google Scholar 

  • Richmond, R C. 1969. Heritability of phototactic and geotactic responses in Drosophila pseudoobscura. Am Nat, 103, 315–316.

    Google Scholar 

  • Ringo, J, and Wood, D. 1983. Pupation site selection in Drosophila simulans. Behav Genet, 13, 17–27.

    CAS  PubMed  Google Scholar 

  • Robertson, A. 1955. Selection in animals: Synthesis. Cold Spr. Harb. Symp Quant Biol, XX, 225–229.

    Google Scholar 

  • Robertson, A. 1967. The spectrum of genetic variation 5–16. Lewontin, R. C. (ed.) In Population Biology and Evolution, Syracuse Univ. Press, New York.

    Google Scholar 

  • Robertson, F W. 1955. Selection response, and the properties of genetic variation. Cold Spr. Harb. Symp Quant Biol, XX, 166–177.

    Google Scholar 

  • Robertson, F W. 1957a. Studies in quantitative inheritance X. Genetic variation of ovary size in Drosophila. J Genet, 55, 410–427.

    Google Scholar 

  • Robertson, F W. 1957b. Studies in quantitative inheritance XI. Genetic and environmental correlation between body size and egg production in Drosophila melanogaster. J Genet, 55, 428–443.

    Google Scholar 

  • Robertson, F W. 1960. The ecological genetics of growth in Drosophila. 2. Selection for large body size on different diets. Genet Res, 1, 305–318.

    Google Scholar 

  • Robertson, F W. 1962. Changing the relative size of the body parts of Drosophila by selection. Genet Res, 3, 169–180.

    Google Scholar 

  • Robertson, F W. 1963. The ecological genetics of growth in Drosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet Res, 4, 74–92.

    Google Scholar 

  • Robertson, F W. 1964. The ecological genetics of growth in Drosophiia. 7. The role of canalization in the stability of growth relations. Genet Res, 5, 107–126.

    Google Scholar 

  • Robertson, F W, and Reeve, E. 1952. Studies in quantitative inheritance. 1. The effects of selection of wing and thorax length in Drosophiia melanogaster. J Genet, 50, 414–448.

    Google Scholar 

  • Rose, M R. 1982. Antagonistic pleiotropy, dominance and genetic variation. Heredity, 48, 63–78.

    Google Scholar 

  • Rose, M R. 1983. Theories of life-history evolution. Amer Zool, 23, 15–23.

    Google Scholar 

  • Rose, M R. 1984. Genetic covariation in Drosophiia life history: untangling the data. Am Nat, 123, 565–569.

    Google Scholar 

  • Rose, M R, and Charlesworth, B. 1981a. Genetics of life history in Drosophiia melanogaster. I. Sib analysis of adult females. Genetics, 97, 173–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose, M R, and Charlesworth, B. 1981b. Genetics of life history in Drosophiia melanogaster. II. Exploratory selection experiments. Genetics, 97, 1187–1196.

    Google Scholar 

  • Sang, J H. 1962. Selection for rate of larval development using Drosophiia melanogaster cultured axenically on deficient diets. Genet Res, 3, 90–99.

    Google Scholar 

  • Sang, J H, and Clayton, G A. 1957. Selection for larval development time in Drosophiia. J Hered, 48, 265–270.

    Google Scholar 

  • Sen, B K, and Robertson, A. 1964. An experimental examination of methods for the simultaneous selection of two characters using Drosophiia melanogaster. Genetics, 50, 199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Service, P M, and Rose, M R. 1985. Genetic covariation among life-history components: the effect of novel environments. Evolution, 39, 943–945.

    PubMed  Google Scholar 

  • Sewell, D, Burnet, B, and Connolly, K. 1975. Genetic analysis of larval feeding behaviour in Drosophiia melanogaster. Genet Res, 24, 163–173.

    Google Scholar 

  • Sheridan, A K, Frankham, R, Jones, L P, Rathie, K A, and Barker, J S F. 1968. Partitioning of variance and estimation of genetic parameters for various bristle number characters of Drosophiia melanogaster. Theor Appl Genet, 38, 179–187.

    CAS  PubMed  Google Scholar 

  • Slatkin, M. 1970. Selection and polygenic characters. Proc Natl Acad Sci, 66, 87–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sondhi, K C. 1960. Selection for a character with a bounded distribution of phenotypes in Drosophiia subobscura. J Genet, 193–221.

    Google Scholar 

  • Sorensen, D A, and Hill, W G. 1982. Effect of short term directional selection on genetic variability: experiments with Drosophiia melanogster. Heredity, 48, 27–33.

    CAS  PubMed  Google Scholar 

  • Sorenson, D A, and Hill, W G. 1983. Effects of disruptive selection on genetic variance. Theor Appl Genet, 65, 173–180.

    Google Scholar 

  • Spiess, E B, and Yu, H. 1975. Relative mating activity of the sexes in homokaryotypes of Drosophiia persimilis from a redwoods population. Behav Genet, 5, 203–216.

    CAS  PubMed  Google Scholar 

  • Spuhler, K P, Crumpacker, D W, Williams, J S, and Bradley, B P. 1978. Response to selection for mating speed and changes in gene arrangement frequencies in descendents from a single population of Drosophiia pseudoobscura. Genetics, 89, 729–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner, W W M. 1974. Enzyme polymorphism and dessication resistance in two species of Hawaiian Drosophiia. Ph.D. Dissertation. Univ. of Hawaii (Mic. no. 75–5041). University Microfilms, Ann Arbor, MI.

  • Tait, W M, and Prabhu, S S. 1970. Fecundity and hatchability in Drosophiia melanogaster. J Genet, 60, 152–158.

    Google Scholar 

  • Tantawy, A O. 1956a. Selection for long and short wing lengths in Drosophiia melanogaster with different systems of mating. Genetica, 28, 231–262.

    CAS  PubMed  Google Scholar 

  • Tantawy, A O. 1956b. Response to selection and changes of genetic variability for wing length in Drosophiia melanogaster with brother-sister matings. Genetica, 28, 177–200.

    CAS  PubMed  Google Scholar 

  • Tantawy, A O. 1961. Effects of temperature on productivity and genetic variance of body size in populations of Drosophiia pseudoobscura. Genetics, 46, 227–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O. 1964. Studies on natural populations of Drosophiia. III. Morphological and genetic differences of wing length in Drosophiia melanogaster and D. simulans in relation to season. Evolution, 18, 560–570.

    Google Scholar 

  • Tantawy, A O, and Tayel, A A. 1970. Studies on natural populations of Drosophiia. X. Effects of disruptive and stabilizing selection on wing length and the correlated response in Drosophiia melanogaster. Genetics, 65, 121–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O, and Rakha, F A. 1964. Studies on natural populations of Drosophiia. IV. Genetic variances of and correlations between four characters in D. melanogaster and D. simulans. Genetics, 50, 1349–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O, Mallah, G S, and Tewfik, H R. 1964. Studies on natural populations of Drosophiia. II. Heritability and response to selection for wing length in Drosophiia fnelanogaster and D. simulans at different temperatures. Genetics, 49, 935–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O, El-Helw, M R. 1966. Studies on natural populations of Drosophiia. V. Correlated response to selection in Drosophiia melanogaster. Genetics, 53, 97–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O, and El-Helw, M R. 1970. Studies on natural populations of Drosophiia. XI. Some fitness components and their heritabi'ities in natural and mutant populations of Drosophiia melanogaster. Genetics, 64, 79–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoday, J M. 1958. Homeostasis in a selection experiment. Heredity, 12, 401–415.

    Google Scholar 

  • Toro, M A, and Charlesworth, B. 1982. An attempt to detect genetic variation in sex ratio in Drosophiia melanogaster. Heredity, 49, 199–209.

    Google Scholar 

  • Turelli, M. 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Pop Biol, 25, 138–193.

    CAS  Google Scholar 

  • Van Duken, F R, and Scharloo, W. 1979. Divergent selection on locomoto activity in Drosophiia melanogaster. 1. Selection respons. Behav Genet, 9, 543–553.

    Google Scholar 

  • Van Valen, L. 1965. Morphological variation and width of the ecological nicne. Am Nat, 99, 377–390.

    Google Scholar 

  • Yoo, B H. 1980. Long-term selection for a quantitative character in large replicate populations of Drosophiia melanogaster. I, Response to selection. Genet Res, 35, 1–17.

    Google Scholar 

  • Yousif, M E, and Skibinski, D O F. 1982. Directional-disruptive selection in Drosophiia melanogaster. Heredity, 49, 71–79.

    CAS  PubMed  Google Scholar 

  • Watanabe, T K, and Anderson, W W. 1976. Selection for geotaxis in Drosophiia melanogaster: heritability, degree of dominance, and correlated responses to selection. Behav Genet, 6, 71–86.

    CAS  PubMed  Google Scholar 

  • Wood, D, and Ringo, J M. 1982. Artificial selection for altered male wing display in Drosophiia simulans. Behav Genet, 12, 449–458.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biology, 1205 Avenue Dr., Penfield, Montréal, H3A 1B1, Québec, Canada

    Derek A Roff & Timothy A Mousseau

Authors
  1. Derek A Roff
    View author publications

    Search author on:PubMed Google Scholar

  2. Timothy A Mousseau
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roff, D., Mousseau, T. Quantitative genetics and fitness: lessons from Drosophila. Heredity 58, 103–118 (1987). https://doi.org/10.1038/hdy.1987.15

Download citation

  • Received: 25 April 1986

  • Issue date: 01 February 1987

  • DOI: https://doi.org/10.1038/hdy.1987.15

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Heritability of biting time behaviours in the major African malaria vector Anopheles arabiensis

    • Nicodem J. Govella
    • Paul C. D. Johnson
    • Heather M. Ferguson

    Malaria Journal (2023)

  • Gene-poor Y-chromosomes substantially impact male trait heritabilities and may help shape sexually dimorphic evolution

    • Tobias Møgelvang Nielsen
    • Jaden Baldwin
    • Kenneth M. Fedorka

    Heredity (2023)

  • Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup

    • Amir Yassin
    • Nelly Gidaszewski
    • Jean R. David

    Genetica (2022)

  • Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi

    • Bert Van Bocxlaer
    • Claudia M. Ortiz-Sepulveda
    • Xavier Vekemans

    BMC Evolutionary Biology (2020)

  • Genetic regulation of diapause and associated traits in Chilo partellus (Swinhoe)

    • Mukesh K. Dhillon
    • Fazil Hasan
    • Hari C. Sharma

    Scientific Reports (2020)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited