Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Evolutionary divergence between sympatric species of southern African Hakes, Merluccius capensis and M. paradoxus. I. Electrophoretic analysis of proteins
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1988

Evolutionary divergence between sympatric species of southern African Hakes, Merluccius capensis and M. paradoxus. I. Electrophoretic analysis of proteins

  • W Stewart Grant1 nAff3,
  • Inga I Becker1 &
  • Rob W Leslie2 

Heredity volume 61, pages 13–20 (1988)Cite this article

  • 695 Accesses

  • 30 Citations

  • Metrics details

Abstract

We estimated the amount of genetic divergence between two morphologically similar species of southern African hake, Merluccius capensis and M. paradoxus, with the electrophoretic analysis of proteins encoded by 31 loci. Nei's genetic distance between these taxa was 0·583 (±0·160) and is typical of evolutionary divergence between well differentiated congeneric species. We found no evidence of hybrid individuals. The mean heterozygosity over 13 samples of M. capensis was 0·055 and over 10 samples of M. paradoxus was 0·067. The present sympatric distributions of these fish are most likely the result of secondary contact after speciation in allopatry or the result of repeated dispersals of ancestral populations of other Atlantic Ocean hakes to southern Africa, rather than the result of sympatric speciation. There were significant excesses of rare alleles in both species as compared with that expected for neutral alleles in species at drift-mutation equilibrium. Average heterozygosities, however, were not appreciably reduced in comparison with other marine fish. Using genetic distance and the assumptions of the molecular clock, we estimate that the lineages leading to these species diverged from one another between 7 and 13 million years ago.

Similar content being viewed by others

Segregation distortion: high genetic load suggested by a Chinese shrimp family under high-intensity selection

Article Open access 11 December 2020

Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis

Article Open access 10 September 2024

Population genetics reveals divergent lineages and ongoing hybridization in a declining migratory fish species complex

Article 04 June 2022

Article PDF

References

  • Archie, J W. 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution, 39, 623–637.

    Article  PubMed  Google Scholar 

  • Becker, I I, Grant, W S, Kirby, R, and Robb, F T. 1988. Evolutionary divergence between sympatric species of southern African Hakes, Merluccius capensis and M. paradoxus. II. Restriction enzyme analysis of mitochondrial DNA. Heredity, 61, 21–30.

    Article  CAS  Google Scholar 

  • Bentz, K L M. 1976. Gillarch morphology of the Cape hakes, Merluccius capensisCast, and M. paradoxus Franca. Fish Bull S Afr, 8, 17–22.

    Google Scholar 

  • Botha, L. 1980. The biology of the Cape Hakes Merluccius capensis Cast, and M paradoxus Franca in the Cape of Good Hope Area. Ph.D. Thesis, University of Stellenbosch, South Africa, 182pp.

    Google Scholar 

  • Cabo, F L. 1965. Las merluzas atlanticas. Publ Dir GenPesca Marit, 4, 208.

    Google Scholar 

  • Carlson, S S, Wilson, A C, and Maxson, R L. 1978. Do albumin clocks run on time? A reply. Science, 200, 1183–1185.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, R, and Nei, M. 1977. Bottleneck affects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution, 31, 347–356.

    Article  PubMed  Google Scholar 

  • Chakraborty, R, Haag, M, Ryman, N, and Stahl, G. 1982. Hierarchical gene diversity analysis and its application to brown trout population data. Hereditas, 97, 17–22.

    Article  Google Scholar 

  • Climap. 1976. The surface of the ice-age earth. Science (Wash., DC)191, 1131–1137.

    Article  Google Scholar 

  • Fitch, W M. 1976. Molecular evolutionary clocks. In Ayala, F. J. (ed.)Molecular Evolution, Sinauer Assoc. Inc., Sunderland, Massachusetts, pp. 160–178.

    Google Scholar 

  • Ferris, S, and Whitt, G. 1978. Genetic and molecular analysis of nonrandom dimer assembly of the creatine kinase isozymes of fishes. Biochem Genet, 16, 811–829.

    Article  CAS  PubMed  Google Scholar 

  • Franca, P. 1954. Contribuicao para o conhecimento do genero Merluccius no Atlantico oriental ao sul do equador. Trabhs Miss Biol Marit, 8, 46–98.

    Google Scholar 

  • Franca, P. 1971. Hipoteses acerca da provavel ocorrencia de Merluccius merluccius paradoxus Franca 1960 em aguas Angolanas. Not Cent Biol Aquat Trop, 26, 1–18.

    Google Scholar 

  • Fuerst, P A, Chakraborty, R, and Nei, M. 1977. Statistical studies on protein polymorphism in natural populations I. distribution of single locus heterozygosity. Genetics, 86, 455–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Futuyma, D J, and Mayer, G C. 1980. Non-allopatric speciation in animals. Syst Zool, 29, 254–271.

    Article  Google Scholar 

  • Inada, T. 1981. Studies on the Merlucciid fishes. Bull, Far Seas Fish Res Lab, Shimizu, Japan. 18, 1–172.

    Google Scholar 

  • Jones, B W, and Mackie, I M. 1970. On application of electrophoretic analysis of muscle myogens to taxonomic studies in the genus Merluccius. Comp Biochem Physiol, 32, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Kabata, Z, and Ho, J-S. 1981. The origin and dispersal of hake (genus Merluccius: Pisces: Teleostei) as indicated by its copopod parasites. Oceanogr Mar Biol Ann Rev, 19, 381–404.

    Google Scholar 

  • Kimura, M, and Crow, J F. 1964. The number of alleles that can be maintained in a finite population. Genetics, 49, 725–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, M, and Ohta, T. 1971. Protein polymorphism as a phase of molecular evolution. Nature, 229, 467–469.

    Article  CAS  PubMed  Google Scholar 

  • Markert, C L, and Eaulhaber, I. 1965. Lactate dehydrogenase isozyme patterns of fish. J Expl Zool, 159, 319–332.

    Article  CAS  Google Scholar 

  • Maruyama, T, and Fuerst, P A. 1984. Populations bottlenecks and nonequlibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics, 108, 745–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • May, B, Shaklee, J B, and Stoneking, M. 1979. Joint segregation of biochemical loci in Salmonidae: results from experiments with Salvelinus and review of the literature on other species. J Fish Res Bd Can, 36, 1114–1128.

    Article  CAS  Google Scholar 

  • Meyer-Rochow, V B. 1972. A note on some parasites of Merluccius capensis (Pices) and their zoogeographical significance. Afr J Trop Hydrobioi Fish, 2, 82–84.

    Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Amer Natur, 106, 283–292.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M, and Roychoudhury, A K. 1974. Sampling variances of heterozygosity and genetic distance. Genetics, 76, 379–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M, Maruyama, T, and Chakraborty, R. 1975. The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Article  PubMed  Google Scholar 

  • Payne, A I L, Augustyn, C J, and Leslie, R W. 1986. Biomass index and catch of Cape hake from random stratified sampling cruises in division 1.6 during 1984. Colln Scient Pap Int Comm SE Atl Fish, 12, 99–123.

    Google Scholar 

  • Radinsky, L. 1978. Do albumin clocks run on time? Science, 200, 1182–1183.

    Article  CAS  PubMed  Google Scholar 

  • Ridgway, G J, Sherbourne, S W, and Lewis, R D. 1970. Polymorphism in the esterses of Atlantic herring. Trans Am Fish Soc, 99, 147–151.

    Article  CAS  Google Scholar 

  • Rosen, D E. 1978. Vicariant patterns and historical explanation in biogeography. Syst Zool, 27, 159–188.

    Article  Google Scholar 

  • Shaklee, J B, Tamaru, C S, and Waples, R W. 1982. Speciation and evolution of marine fishes studied by the electrophoretic analysis of proteins. Pac Sci, 36, 141–157.

    Google Scholar 

  • Shannon, L V. 1985. The Benguela ecosystem. Part. I. Evolution of the Benguela physical features and processes. Oceanogr Mar Biol Ann Rev, 23, 105–182.

    Google Scholar 

  • Shaw, C R, and Prasad, R. 1970. Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem Genet, 4, 297–320.

    Article  CAS  PubMed  Google Scholar 

  • Skibinski, D O F, and Ward, R D. 1982. Correlation between heterozygosity and evolutionary rate of proteins. Nature, 298, 490–492.

    Article  CAS  Google Scholar 

  • Sokal, R R, and Rohlf, R J. 1981. Biometry. 2d. ed., Freeman and Co., San Francisco CA. 859 p.

    Google Scholar 

  • Szidat, L. 1961. VersucheinerZoogeographie des Sud-Atlantik mit Hilfe von Leitparsiten der Meeresfische. Parasitol Schr Reihe, 13, 1–98.

    Google Scholar 

  • Thorpe, J P. 1982. The molecular clock hypothesis: biochemical evolution genetic differentiation and systematics. Ann Rev Ecol Syst, 13, 139–168.

    Article  CAS  Google Scholar 

  • Van Eck, T H. 1969. The South African hake: ‘Merluccius capensis’—or ‘Merluccius paradoxus’? S. Afr. Shipp. News Fish Ind Rev, 24, 95–97.

    Google Scholar 

  • Wawter, A T, Rosenblatt, R, and Gorman, G C. 1980. Genetic divergence among fishes of the Eastern Pacific and the Caribbean: Support for the molecular clock. Evolution, 34, 705–711.

    Article  Google Scholar 

  • Watterson, G A. 1984. Allele frequencies after a bottleneck. Theor Pop Biol, 26, 387–407.

    Article  Google Scholar 

  • Whitt, G S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J Expl Zool, 175, 1–35.

    Article  CAS  Google Scholar 

  • Winans, G. 1980. Geographic variation in the milkfish Chanos chanos. I. Biochemical evidence. Evolution, 34, 558–574.

    CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. W Stewart Grant

    Present address: Department of Genetics, University of the Witwatersrand, Johannesburg, 2050, South Africa

Authors and Affiliations

  1. Department of Microbiology, University of Cape Town, Rondebosch, 7700, South Africa

    W Stewart Grant & Inga I Becker

  2. Sea Fisheries Research Institute, Private Bag X2, Rogge Bay, 8012, South Africa

    Rob W Leslie

Authors
  1. W Stewart Grant
    View author publications

    Search author on:PubMed Google Scholar

  2. Inga I Becker
    View author publications

    Search author on:PubMed Google Scholar

  3. Rob W Leslie
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, W., Becker, I. & Leslie, R. Evolutionary divergence between sympatric species of southern African Hakes, Merluccius capensis and M. paradoxus. I. Electrophoretic analysis of proteins. Heredity 61, 13–20 (1988). https://doi.org/10.1038/hdy.1988.86

Download citation

  • Received: 17 September 1987

  • Issue date: 01 August 1988

  • DOI: https://doi.org/10.1038/hdy.1988.86

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Phylogenetic prospecting for cryptic species of the genus Merluccius (Actinopterygii: Merlucciidae)

    • Montse Pérez
    • María Fernández-Míguez
    • Pablo Presa

    Scientific Reports (2021)

  • Genetic relationships among Merluccius species

    • María Inés Roldán
    • José Luis García-Marín
    • Carles Pla

    Heredity (1999)

  • Biochemical genetics of Indian pygmy field mice: Superoxide dismutase (Sod-1) as a diagnostic marker inMus booduga

    • Sunita Singh
    • T. Sharma

    Biochemical Genetics (1996)

  • Evolutionary divergence between sympatric species of southern African Hakes, Merluccius capensis and M. paradoxus. II. restriction enzyme analysis of mitochondrial DNA

    • Inga I Becker
    • W Stewart Grant
    • Frank T Robb

    Heredity (1988)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited