Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Multilocus heterozygosity at protein loci and fitness in the European oyster, Ostrea edulis L.
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1989

Multilocus heterozygosity at protein loci and fitness in the European oyster, Ostrea edulis L.

  • G Alvarez1,
  • C Zapata1,
  • R Amaro1 &
  • …
  • A Guerra2 

Heredity volume 63, pages 359–372 (1989)Cite this article

  • 811 Accesses

  • 37 Citations

  • Metrics details

Abstract

The relationship between multilocus heterozygosity at protein loci and two fitness traits, growth rate and viability, has been investigated in the European oyster, Ostrea edulis L. A cohort of individuals of the same age was sampled at two times when they were 18 and 30 months old. Weight and genotype for five polymorphic enzyme loci were determined for individuals of these two samples. A positive correlation between growth rate (measured as weight at a specific age) and multilocus heterozygosity is detected in the two age classes. The correlation is statistically significant for the 30-month-old oysters, in which heterozygosity explains about 2 per cent of the variability in growth rate among individuals. This value is very similar to those reported in several marine molluscs, as the American oyster, Crassostrea virginica (Zouros et al., 1980) and the mussel Mytilus edulis (Koehn and Gaffney, 1984), and other species.

The relationship between multilocus allozyme heterozygosity and viability has usually been described in statistical terms, but the viability effects associated with heterozygosity have not been quantified. In this paper, we attempt to measure viability for individuals differing in their degree of multilocus allozyme heterozygosity by using appropriate fitness estimators. In the O. edulis cohort, a decrease of the postsettlement viability estimates is observed when individual heterozygosity increases, and this unexpected pattern might be related to the high mortalities observed. On the other hand, published data of C. virginica and M. edulis, from which a heterozygosity-viability positive correlation was reported (Zouros et al., 1983; Diehl and Koehn, 1985), are used for estimating viability fitnesses for heterozygosity classes. In all three species large differences in estimates of viability and selection coefficients appear to be associated with multilocus allozyme heterozygosity (mean postsettlement viabilities for heterozygous individuals at one or more loci are 0·51±0·12 in O. edulis, 2·68±0·67 and 2·35±0·38 in two populations of C. virginica, and 2·19±0·47 in M. edulis). The extent of the fitness estimates suggests that the magnitude of the association between allozyme heterozygosity and viability is stronger than that corresponding with growth rate in the three species of marine molluscs. The implications of these findings in relation to the genetic mechanism underlying the heterozygosity-fitness correlation are discussed.

Similar content being viewed by others

Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods

Article Open access 10 November 2022

Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis

Article Open access 10 September 2024

Multiple origins of freshwater invasion and parental care reflecting ancient vicariances in the bivalve family Cyrenidae (Mollusca)

Article Open access 28 September 2024

Article PDF

References

  • Adamkewicz, L. Taub, B R, and Wall, J R. 1984. Genetics of the clam Mercenaria mercenaria. II. Size and genotype. Malacologia, 25, 525–533.

    Google Scholar 

  • Alvarez, G. Santos, M, and Zapata, A. 1984. Frequencydependent selection arising from inappropriate fitness estimation. Evolution, 38, 696–699.

    Article  PubMed  Google Scholar 

  • Anxolabéhère, D. Goux, J M, and Periquet, G. 1982. A bias in estimation of viabilities from competition experiments. Heredity, 48, 271–282.

    Article  PubMed  Google Scholar 

  • Beardmore, J A, and Ward, R D. 1977. Polymorphism, selection, and multi-locus heterozygosity in the plaice, Pleuronectes platessa L. In Christiansen, F. B. and Fenchel, T. M. (eds) Measuring Selection in Natural Populations, Springer-Verlag, New York, pp. 207–221.

    Chapter  Google Scholar 

  • Beaumont, A R. Beveridge, C M, and Budd, M D. 1983. Selection and heterozygosity within single families of the mussel Mytilus edulis (L.). Mar Biol Lett, 4, 151–161.

    Google Scholar 

  • Bush, R M. Smouse, E E, and Ledig, F T. 1987. The fitness consequences of multiple-locus heterozygosity: The relationship between heterozygosity and growth rate in pitch pine (Pinus rigida Mill.). Evolution, 41, 787–798.

    Article  PubMed  Google Scholar 

  • Connolly, J, and Gliddon, G. 1984. On the estimation of viabilities in competition experiments. Heredity, 53, 527–543.

    Article  Google Scholar 

  • Cook, L M. 1971. Coefficients of Natural Selection. Hutchinson Univ. Library, London.

    Google Scholar 

  • Crow, J F, and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper & Row, Publishers, New York.

    Google Scholar 

  • Diehl, L J, and Koehn, R K. 1985. Multiple-locus heterozygosity, mortality, and growth in a cohort of Mytilus edulis. Mar Biol, 88, 265–271.

    Article  Google Scholar 

  • Elandt-Johnson, R C. 1971. Probability Models and Statistical Methods in Genetics. John Wiley & Sons, New York.

    Google Scholar 

  • Foltz, D W. Newkirk, G F, and Zouros, E. 1983. Genetics of growth rate in the American oyster: Absence of interactions among enzyme loci. Aquaculture, 33, 157–165.

    Article  Google Scholar 

  • Foltz, D W, and Zouros, E. 1984. Enzyme heterozygosity in the scallop Placopecten magellanicus (Gmelin) in relation to age and size. Mar Biol Lett, 5, 255–263.

    CAS  Google Scholar 

  • Fujio, Y. 1982. A correlation of heterozygosity with growth rate in the Pacific oyster, Crassostrea gigas. Tohoku J Agric Res, 33, 66–75.

    Google Scholar 

  • Gaffney, P M, and Scott, T M. 1984. Genetic heterozygosity and production traits in natural and hatchery populations of bivalves. Aquaculture, 42, 289–302.

    Article  Google Scholar 

  • Gartner-Kepkay, K E. Dickie, L M. Freeman, K R, and Zouros, E. 1980. Genetic differences and environments of mussel populations in the maritime provinces. Can J Fish Aquat Sci, 37, 775–782.

    Article  Google Scholar 

  • Gartner-Kepkay, K E. Zouros, E. Dickie, L M, and Freeman, K R. 1983. Genetic differentiation in the face of gene flow: A study of mussel populations from a single Nova Scotian embayment. Can J Fish Aquat Sci, 40, 443–451.

    Article  Google Scholar 

  • Garton, D W. Koehn, R K, and Scott, T M. 1984. Multiplelocus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population. Genetics, 108, 445–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green, R H. Singh, S M. Hicks, B, and McCuaig, J. 1983. An artic intertidal population of Macoma balthica (Mollusca, Pelecypoda): Genotypic and phenotypic components of population structure. Can J Fish Aquat Sci, 40, 1360–1371.

    Article  Google Scholar 

  • Koehn, R K. Diehl, L J, and Scott, T M. 1988. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis. Genetics, 118, 121–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koehn, R K, and Gaffney, Y M. 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Mar Biol, 82, 1–7.

    Article  Google Scholar 

  • Koehn, R K, and Shumway, S E. 1982. A genetic/physiological explanation for differential growth rate among individuals of the American oyster Crassostrea virginica (Gmelin). Mar Biol Lett, 3, 35–42.

    Google Scholar 

  • Ledig, F T. Guries, R P, and Bonefeld, B A. 1983. The relation of growth to heterozygosity* in pitch pine. Evolution, 37, 1227–1238.

    Article  PubMed  Google Scholar 

  • Lewont'N, R C, and Cockerham, M C. 1959. The goodnessof-fit test for detecting natural selection in random mating populations. Evolution, 13, 561–564.

    Article  Google Scholar 

  • Li, C C. 1959. Notes on relative fitness of genotypes that forms a geometric progression. Evolution, 13, 564–567.

    Google Scholar 

  • Li, C C, and Horvitz, D. 1953. Some methods of estimating the inbreeding coefficient. Am J Human Genet, 5, 107–117.

    CAS  Google Scholar 

  • Mallet, A L. Zouros, E K. Gartner-Kepkay, E, and Freeman, K R. 1986. Genetics of growth in blue mussels: family and enzyme-heterozygosity effects. Mar Biol, 92, 475–482.

    Article  Google Scholar 

  • Millar, R H. 1961. Scottish oyster investigations 1946–1958. Depart Agric and Fish for Scotland Mar Res, 3, 1–76.

    Google Scholar 

  • Mitton, J B, and Grant, M C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann Rev Ecol Syst, 15, 479–499.

    Article  Google Scholar 

  • Mitton, J B, and Koehn, R K. 1975. Genetic organization and adaptative response of allozymes to ecological variables in Fundulus heteroclitus. Genetics, 79, 97–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montes, J. Acosta, C P, and Guerra, A. 1988. Oyster mortality in Galicia (N. W. Spain). In De Pauw, N., Jaspers, E., Ackefors, H. and Wilkins, N. (eds) Proceedings Aquaculture Europe ′87. (In press).

  • Mukai, T. Watanabe, T K, and Yamaguchi, O. 1974. The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population. Genetics, 77, 771–793.

    Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution. North-Holland, Amsterdam.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, A, and Hill, L G. 1984. Deviations from Hardy Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics, 107, 703–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodhouse, P G. McDonald, J H. Newell, R I E, and Koehn, R K. 1986. Gamete production, somatic growth and multiple-locus enzyme heterozygosity in Mytilus edulis. Mar Biol, 90, 209–214.

    Article  Google Scholar 

  • Roman, G. 1987. Estudio sobre acondicionamiento de la ostra plana (Ostrea edulis L.). Cuad Marisq Publ Tec, 9, 13–39.

    Google Scholar 

  • Saavedra, C. Zapata, C. Guerra, A, and Alvarez, G. 1987. Genetic structure of populations of flat oyster (Ostrea edulis “Linneo, 1758”) from the NW of the Iberian Peninsula. Inv Pesq, 51, 225–241.

    Google Scholar 

  • Schaal, B A, and Levin, D A. 1976. The demographic genetics of Liatris cylindracea Michx. (Compositae). Amer Natur, 110, 191–206.

    Article  CAS  Google Scholar 

  • Singh, S M, and Zouros, E. 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution, 32, 342–353.

    Article  Google Scholar 

  • Singh, S M, and Zouros, E. 1981. Genetics of growth rate in oysters and its implications for aquaculture. Can J Genet Cytol, 23, 119–130.

    Article  Google Scholar 

  • Smouse, P E. 1986. The fitness consequences of multiple-locus heterozygosity under the multiplicative overdominance and inbreeding depression models. Evolution, 40, 946–957.

    Article  PubMed  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry. Freeman and Company, San Francisco.

    Google Scholar 

  • Strauss, S H. 1986. Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata. Genetics, 113, 115–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walne, P R. 1964. Observations on the fertility of the oysters (Ostrea edulis). J Mar Biol Ass UK, 44, 293–310.

    Article  Google Scholar 

  • Wilkins, N P, and Mathers, N F. 1973. Enzyme polymorphism in the European oyster, Ostrea edulis L. Anim Blood Grps Biochem Genet, 4, 41–47.

    Article  CAS  Google Scholar 

  • Workman, P L. 1969. The analysis of simple genetic polymorphisms. Hum Biol, 412, 97–114.

    Google Scholar 

  • Zouros, E, and Foltz, D W. 1984a. Minimal selection requirements for the correlation between heterozygosity and growth, and for the deficiency of heterozygotes, in oyster populations. Dev. Genet, 4, 393–405.

    Google Scholar 

  • Zouros, E, and Foltz, D W. 1984b. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia, 25, 583–591.

    Google Scholar 

  • Zouros, E, and Foltz, D W. 1987. The use of allelic isozyme variation for the study of heterosis. In Rattazzi, M. C, Scandalios, J. G. and Whitt, G. S. (eds) Isozymes: Current Topics in Biological and Medical Research, vol. 13, A. R. Liss, New York, pp. 1–59.

    Google Scholar 

  • Zouros, E. Romero-Dorey, M, and Mallet, A L. 1988. Heterozygosity and growth in marine bivalves: further data and possible explanations. Evolution, 42, 1332–1341.

    Article  CAS  PubMed  Google Scholar 

  • Zouros, E. Singh, S M. Foltz, D W, and Mallet, A L. 1983. Post-settlement viability in the American oyster (Crassostrea virginica): an overdominant phenotype. Genet Res, 41, 259–270.

    Article  Google Scholar 

  • Zouros, E. Singh, H M, and Miles, H E. 1980. Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution, 34, 856–867.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Biología Fundamental, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

    G Alvarez, C Zapata & R Amaro

  2. Centro Experimental de Vilaxoán, Consellería de Pesca, Xunta de Galicia, Spain

    A Guerra

Authors
  1. G Alvarez
    View author publications

    Search author on:PubMed Google Scholar

  2. C Zapata
    View author publications

    Search author on:PubMed Google Scholar

  3. R Amaro
    View author publications

    Search author on:PubMed Google Scholar

  4. A Guerra
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, G., Zapata, C., Amaro, R. et al. Multilocus heterozygosity at protein loci and fitness in the European oyster, Ostrea edulis L.. Heredity 63, 359–372 (1989). https://doi.org/10.1038/hdy.1989.110

Download citation

  • Received: 26 April 1989

  • Issue date: 01 December 1989

  • DOI: https://doi.org/10.1038/hdy.1989.110

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Food regime modulates physiological processes underlying size differentiation in juvenile intertidal mussels Mytilus galloprovincialis

    • David Tamayo
    • Katerin Azpeitia
    • Irrintzi Ibarrola

    Marine Biology (2016)

  • Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia)

    • Emilio Rolán-Alvarez
    • Carlos Zapata
    • Gonzalo Alvarez

    Heredity (1995)

  • Allozyme variation in European populations of the oyster Ostrea edulis

    • C. Saavedra
    • C. Zapata
    • G. Alvarez

    Marine Biology (1993)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited