Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. III. Interlocus associations
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1989

Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. III. Interlocus associations

  • Donald M Waller1 &
  • Susan E Knight1 

Heredity volume 63, pages 1–9 (1989)Cite this article

  • 475 Accesses

  • 10 Citations

  • Metrics details

Abstract

Electrophoresis was used to examine levels of association between alleles at different variable loci within eight natural populations of the annual plant, Impatiens capensis. This species produces both obligately self-fertilizing cleistogamous (CL) and strongly protandrous chasmogamous (CH) flowers. Values of gametic (Dij) and composite (Δij) disequilibrium estimated for all pairs of covarying loci revealed significant levels of disequilibrium in most of the populations. A bootstrap technique was used to obtain weighted means and standard errors of normalized disequilibrium estimates and these were compared among populations and groups. Mean composite disequilibrium (Δ′) spanned a remarkable range among populations (0·9−1·0, mean = 0·43), as did fixation indexes (f), but these were only weakly correlated with each other (r = 0·50). Levels of disequilibrium in the CL and CH progeny generally resembled those found in their maternal parents, but values for the CH group were more variable. A reduction in disequilibrium was sometimes associated with outcrossing, but it is unlikely that selection to reduce disequilibrium favours outcrossing in this species.

Similar content being viewed by others

Comparative transcriptomics reveals commonalities and differences in the genetic underpinnings of a floral dimorphism

Article Open access 01 December 2022

Pericentromeric recombination suppression and the ‘large X effect’ in plants

Article Open access 07 December 2023

Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia

Article 12 September 2023

Article PDF

References

  • Allard, R W, Babbel, G R, Clegg, M T, and Kahler, A L. 1972a. Evidence for coadaptation in Avena barbata. Proc Natl Acad Sci (USA), 69, 3043–3048.

    Article  CAS  Google Scholar 

  • Allard, R W, Kahler, A L, and Weir, B S. 1972b. The effect of selection on esterase allozymes in a barley population. Genetics, 72, 489–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, W K. 1975. Linkage disequilibrium over space and time in natural populations of Drosophila montana. Proc Natl Acad Sci USA, 72, 4095–4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black, W C, and Krafsur, E S. 1985. A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet, 70, 491–496.

    Article  PubMed  Google Scholar 

  • Brown, A, Nevo, E, and Zohary, D. 1977. Association of alleles at esterase loci in wild barley Hordeum spontaneum. Nature, 268, 430–431.

    Article  Google Scholar 

  • Clegg, M T, Allard, R W, and Kahler, A L. 1972. Is the gene the unit of selection? Evidence from two experimental plant populations. Proc Natl Acad Sci USA, 69, 2474–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockerham, C C, and Weir, B S. 1968. Sib mating with two linked loci. Genetics, 60, 629–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockerham, C C, and Weir, B S. 1977. Digenic descent measures for finite populations. Genet Res (Cambridge), 30, 121–147.

    Article  Google Scholar 

  • Crow, J F. 1988. The importance of recombination. In Michod, R. E. and Levin, B. R. (eds) The Evolution of Sex: An Examination of Current Ideas, Sinauer Associates, Inc., Sunderland, MA, pp. 56–73.

    Google Scholar 

  • Crow, J F, and Kimura, M. 1970. An Introduction to Population Genetics Theory. Burgess Publ. Co., Minneapolis.

    Google Scholar 

  • Efron, B. 1982. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia.

    Book  Google Scholar 

  • Falconer, D S. 1981. Introduction to Quantiative Genetics (2nd ed.). Longman, New York.

    Google Scholar 

  • Felsenstein, J. 1974. The evolutionary advantage of recombination. Genetics, 78, 737–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J, and Yokoyama, S. 1976. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics, 83, 845–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foltz, D W, Schaitkin, B M, and Selander, R K. 1982. Gametic disequilibrium in the self-fertilizing slug Deroceras laeve. Evolution, 36, 80–85.

    Article  PubMed  Google Scholar 

  • Guries, R P, and Ledig, F T. 1982. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution, 36, 387–402.

    Article  PubMed  Google Scholar 

  • Harding, J, and Barnes, K. 1977. Genetics of Lupinus. X. Genetic variability, heterozygosity and outcrossing in colonial populations of Lupinus succulentus. Evolution, 31, 247–255.

    Article  PubMed  Google Scholar 

  • Hedrick, P W. 1987. Gametic disequilibrium measures: proceed with caution. Genetics, 117, 331–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick, P W, Jain, S, and Holden, L. 1978. Multilocus systems in evolution. Evol Biol, 11, 101–182.

    Google Scholar 

  • Heller, R, and Maynard Smith, J. 1978. Does Muller's ratchet work with selfing? Genet Res Camb, 32, 289–293.

    Article  Google Scholar 

  • Hill, W G, and Robertson, A. 1966. The effect of linkage on limits to artificial selection. Genet Res, Camb, 8, 269–294.

    Article  CAS  Google Scholar 

  • Hill, W G. 1974. Estimation of linkage disequilibrium in randomly mating populations. Heredity, 33, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S K. 1976. The evolution of inbreeding in plants. Ann Rev Ecol Syst, 7, 469–495.

    Article  Google Scholar 

  • Knight, S E, and Waller, D M. 1987. The genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. I. Population-genetic structure. Evolution, 41, 969–978.

    PubMed  Google Scholar 

  • Langley, C H, Ito, K, and Voelker, R A. 1977. Linkage disequilibrium in natural populations of Drosophila melanogaster. Seasonal variation. Genetics, 86, 447–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie-Ahlberg, C C, and Weir, B S. 1979. Allozymic variation and linkage disequilibrium in some laboratory populations of Drosophila melanogaster. Genetics, 92, 1295–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, D A. 1981. Dispersal versus gene flow in plants. Annals Mo Bot Garden, 68, 232–253.

    Article  Google Scholar 

  • Lewontin, R C. 1964. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics, 49, 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin, R C. 1974. The Genetic Basis of Evolutionary Change. Columbia Univ. Press, New York.

    Google Scholar 

  • Maynard Smith, J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mitchell-Olds, S T, and Waller, D M. 1985. Relative performance of selfed and outcrossed progeny in Impatiens capensis. Evolution, 39, 533–544.

    Article  PubMed  Google Scholar 

  • Nei, M, and Li, W H. 1973. Linkage disequilibrium in subdivided populations. Genetics, 75, 213–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta, T. 1982. Linkage disequilibrium with the island model. Genetics, 101, 139–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Malley, D, Wheeler, N C, and Guries, R P. 1980. A manual for starch gel electrophoresis. Staff Paper, College of Agriculture and Life Sciences, Univ. of Wisconsin, Madison.

  • Schemske, D S. 1978. Evolution of reproductive characteristics in Impatiens (Balsaminaceae): The significance of cleistogamy and chasmogamy. Ecology, 59, 596–613.

    Article  Google Scholar 

  • Smouse, P E, and Neel, J V. 1977. Multivariate analysis of gametic disequilibrium in the Yanomama. Genetics, 85, 733–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobeck, C, Maynard Smith, J, and Charlesworth, B. 1976. The effects of hitchhiking on a gene for recombination. Genetics, 82, 547–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uyenoyama, M. 1988. On the evolution of genetic incompatibility systems: Incompatibility as a mechanism for the regulation of outcrossing distance. In Michod, R. E. and Levin, B. R. (eds) The Evolution of Sex: An Examination of Current Ideas, Sinauer Associates, Inc., Sunderland, MA, pp. 212–232.

    Google Scholar 

  • Waller, D M. 1979. The relative costs of selfed and outcrossed seeds in Impatiens capensis (Balsaminaceae). Amer J Bot, 66, 313–320.

    Article  Google Scholar 

  • Waller, D M. 1980. Environmental determinants of outcrossing in Impatiens capensis (Balsaminaceae). Evolution, 34, 147–761.

    Article  Google Scholar 

  • Waller, D M. 1984. Differences in fitness between seedlings derived from cleistogamous and chasmogamous flowers in Impatiens capensis. Evolution, 38, 427–440.

    Article  PubMed  Google Scholar 

  • Waller, D M, and Knight, S. 1989. Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. II. Outcrossing rates and genetic correlations. Evolution (In press).

  • Weir, B S. 1979. Inferences about linkage disequilibrium. Biometrics, 35, 235–254.

    Article  CAS  PubMed  Google Scholar 

  • Weir, B S, Allard, R W, and Kahler, A L. 1972. Analysis of complex allozyme polymorphisms in a barley population. Genetics, 72, 505–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weir, B S, and Cockerham, C C. 1973. Mixed self and random mating at two loci. Genet Res, Camb, 21, 247–262.

    Article  CAS  Google Scholar 

  • Weir, B S, and Cockerham, C C. 1979. Estimation of linkage disequilibrium in randomly mating populations. Heredity, 42, 105–111.

    Article  Google Scholar 

  • Woods, C S. 1975. The Balsaminaceae in the Southeastern United States. J Arnold Arbor, 56, 413–426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, 53706, WI, USA

    Donald M Waller & Susan E Knight

Authors
  1. Donald M Waller
    View author publications

    Search author on:PubMed Google Scholar

  2. Susan E Knight
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, D., Knight, S. Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. III. Interlocus associations. Heredity 63, 1–9 (1989). https://doi.org/10.1038/hdy.1989.69

Download citation

  • Received: 01 November 1988

  • Issue date: 01 August 1989

  • DOI: https://doi.org/10.1038/hdy.1989.69

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Unexpectedly high levels of selfing in the Australian shrub Grevillea barklyana (Proteaceae)

    • David J Ayre
    • Robert J Whelan
    • Amanda Reid

    Heredity (1994)

  • Restricted gene flow within the morphologically complex species Persoonia mollis (Proteaceae): contrasting evidence from the mating system and pollen dispersal

    • Siegfried L Krauss

    Heredity (1994)

  • Multilocus structure in Pinus contorta Dougl.

    • R.-C. Yang
    • F. C. Yeh

    Theoretical and Applied Genetics (1993)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited