Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic analysis of isoenzyme phenotypes using single tree progenies
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1989

Genetic analysis of isoenzyme phenotypes using single tree progenies

  • Elizabeth Gillet1 &
  • Hans H Hattemer1 

Heredity volume 63, pages 135–141 (1989)Cite this article

  • 702 Accesses

  • 34 Citations

  • Metrics details

Abstract

A method of genetic analysis is proposed for determination of the mode of inheritance of environmentally and ontogenetically stable isoenzyme phenotypes as expressed in angiospermous forest trees. This method also applies to higher plant and animal species characterized by multiple matings of single female parents. The modes of inheritance considered are codominance in the absence and the presence of a (recessive) null allele. The analyzed material consists of zymograms of single maternal trees and their progenies (as seeds or seedlings) from open pollination. Such data is more easily obtained than controlled crosses and can represent the total variation in the population. The genetic analysis requires only the basic assumptions of classical Mendelian analysis, which make use only of the elementary mechanisms of meiosis and fertilization. Additional assumptions on the mating system, such as those required by the mixed mating model, are not needed. The results confirm the need for explicit genetic analysis of zymograms.

Similar content being viewed by others

The role of maternal effects on offspring performance in familiar and novel environments

Article 06 April 2021

Breaking the field phenotyping bottleneck in maize with autonomous robots

Article Open access 21 March 2025

Across-environment seed protein stability and genetic architecture of seed components in soybean

Article Open access 16 July 2024

Article PDF

References

  • Arulsekar, S, Parfitt, D E, and McGranahan, G H. 1985. Isozyme gene markers in Juglans species. J Hered, 76, 103–106.

    Article  Google Scholar 

  • Bartels, H. 1971. Genetic control of multiple esterases from needles and macrogametophytes of Picea abies. Planta, 99, 283–289.

    Article  CAS  Google Scholar 

  • Bergmann, F. 1973. Genetische Untersuchungen bei Picea abies mit Hilfe der Isoenzym-Identifizierung. II. Genetische Kontrolle von Esterase- and Leucin-amino-peptidase-Enzymen im haploiden Endosperm ruhender Samen. Theor Appl Genet, 43, 222–225.

    Article  CAS  Google Scholar 

  • Bergmann, F. 1974. The genetics of some isoenzyme systems in spruce endosperm (Picea abies). Genetika, 6, 353–360.

    Google Scholar 

  • Brotschol, J V. 1983. Allozyme variation in natural populations of Liriodendron tulipifera L. Doctoral dissertation, Dept. of Genetics and Forestry, North Carolina State Univ.

  • Brown, A H D, Matheson, A C, and Eldridge, K G. 1975. Estimation of the mating system of Eucalyptus obliqua L'Herit. by using allozyme polymorphisms. Aust J Bot, 23, 931–949.

    Article  CAS  Google Scholar 

  • Cheliak, W M, Pitel, J A, and Murray, G. 1985. Population structure and the mating system of white spruce. Can J For Res, 15, 301–308.

    Article  Google Scholar 

  • Christiansen, F B, Frydenberg, O, and Simonsen, V. 1977. Genetics of Zoarces populations. X. Selection component analysis of the EstIII polymorphism using samples of successive cohorts. Hereditas, 87, 129–150.

    Article  Google Scholar 

  • El-Kassaby, Y A. 1981. Genetic interpretation of malate dehydrogenase in some conifer species. J Hered, 72, 451–452.

    Article  CAS  Google Scholar 

  • Feret, P P. 1972. Peroxidase isoenzyme variation in interspecific elm hybrids. Can J For Res, 2, 264–270.

    Article  CAS  Google Scholar 

  • Feret, P P, and Stairs, G R. 1971. Peroxidase inheritance in Siberian elm. Forest Sci, 17, 472–475.

    CAS  Google Scholar 

  • Finkeldey, R. 1988. Simultane Vaterschaftsanalyse und Genidentifikation bei Waldbäumen. Theorie und experimentelle Überprüfung am Beispiel der Traubeneiche (Quercus petraea Lieblein). Diplom thesis, Universität Göttingen.

  • Goodman, M M, Newton, K J, and Stuber, C W. 1981. Malate dehydrogenase: Viability of cytosolic nulls and lethality of mitochondrial nulls in maize. Proc Natl Acad Sci USA, 78, 1783–1785.

    Article  CAS  Google Scholar 

  • Goodman, M M, Newton, K J, and Stuber, C W. 1981. F. M. 1980 Genetic control of malate dehydrogenase isozymes in maize. Genetics, 94, 153–168.

    Google Scholar 

  • Guzina, V. 1978. Genetic control of isoperoxydases Px-A1, Px-A2, Px-B1 and Px-B2 in aspen (Populus tremulus L.). Annales Forestales, 8, 51–90.

    Google Scholar 

  • Kim, Z-S. 1979. Inheritance of leucine aminopeptidase and acid phosphatase isozymes in beech (Fagus sylvatica L.). Silvae Genetica, 28, 68–71.

    CAS  Google Scholar 

  • Kim, Z-S. 1980. Veränderung der genetischen Struktur von Buchenpopulationen durch Viabilitätsselektion im Keimlingsstadium. Göttingen Research Notes in Forest Genetics, No. 3.

  • Linares-Bensimón, C. 1984. Versuche zur Viabilitätsselektion an Enzymgenloci bei Alnus glutinosa (L.) Gaertn. Göttingen Research Notes in Forest Genetics, No. 7.

  • Moran, G F, and Bell, J C. 1983. Eucalyptus. In: Tanksley, S. D. and Orton, T. J. (eds) Isozymes in Plant Genetics and Breeding, Part B. Elsevier, Amsterdam, Oxford, New York, pp. 423–441.

    Chapter  Google Scholar 

  • Müller-Starck, G. 1985a. Reproductive success of genotypes of Pinus sylvestris L. in different environments. In Gregorius, H.-R. (ed.) Population Genetics in Forestry. Lecture Notes in Biomathematics, 60, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 118–133.

    Chapter  Google Scholar 

  • Müller-Starck, G. 1985b. Genetic differences between “tolerant” and “sensitive” beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica, 34, 241–247.

    Google Scholar 

  • O'Malley, D M, Allendorf, F W, and Blake, G M. 1979. Inheritance of isozyme variation and heterozygosity in Pinus ponderosa. Biochem Genet, 17, 233–250.

    Article  CAS  Google Scholar 

  • O'Malley, D M, Buckley, D P, Prance, G T, and Bawa, K S. 1988. Genetics of Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae) 2. Mating system. Theor Appl Genet, 76, 929–932.

    Article  CAS  Google Scholar 

  • Phillips, M A, and Brown, A H D. 1980. Mating system and hybridity in Eucalyptus pauciflora. Aust J Biol Sci, 30, 337–344.

    Article  Google Scholar 

  • Pitel, J A, Cheliak, W M, and Barrett, J. 1987. Inheritance of allozymes in a black spruce diallel cross. Silvae Genetica, 36, 149–153.

    Google Scholar 

  • Rajora, O P. 1986. Studies on genetics and relationships of Populus deltoides Marsh., P. nigra L. and P. maximowiczii Henry using isozymes, pollen competition and leaf morphology. Doctoral dissertation, University of Toronto.

  • Rudin, D. 1986. Developmental trends in the field of biochemical genetics of forest trees. In Proc. 18th IUFRO World Congress, Ljubljana, 1986, Vol. 2, pp. 577–588.

  • Saidman, B O, and Naranjo, C A. 1982. Variaciones de esterasas en poblaciones de Prosopis ruscifolia (Leguminosae). Mendeliana, 5, 61–70.

    Google Scholar 

  • Schoen, D J. 1979. An angiosperm analogue to megagametophyte analysis. J theor Biol, 79, 543–546.

    Article  CAS  Google Scholar 

  • Schoen, D J. 1980. Half tetrad analysis in angiosperms. J theor Biol, 86, 315–322.

    Article  Google Scholar 

  • Shields, D R, Orton, T J, and Stuber, C W. 1983. An outline of general resource needs and procedures for the electrophoretic separation of active enzymes from plant tissues. In Tanksley, S. D. and Orton, T. J. (eds) Isozymes in Plant Genetics and Breeding, Part A. Elsevier, Amsterdam, Oxford, New York, pp. 443–463.

    Google Scholar 

  • Stuber, C W, and Goodman, M M. 1984. Inheritance, intracellular localization, and genetic variation of 6-phosphogluconate dehydrogenase in maize. Maydica, 29, 453–471.

    CAS  Google Scholar 

  • Thiebaut, B, Lumaret, R, and Vernet, P. 1982. The bud enzymes of beech (Fagus sylvatica L). Genetic distinction and analysis of polymorphisms in several French populations. Silvae Genetica, 31, 51–60.

    Google Scholar 

  • Torres, A M. 1983. Fruit trees. In Tanksley, S. D. and Orton T. J. (eds) Isozymes in Plant Genetics and Breeding, Part B. Elsevier, Amsterdam, Oxford, New York, pp. 401–421.

    Chapter  Google Scholar 

  • Wendel, J F, and Parks, C R. 1982. Genetic control of isozyme variation in Camellia japonica L. (Theaceae). J Hered, 73, 197–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Abteilung für Forstgenetik und Forstpflanzenzüchtung, Georg-August-Universität Göttingen, Büsgenweg 2, Göttingen, 3400, Federal Republic of Germany

    Elizabeth Gillet & Hans H Hattemer

Authors
  1. Elizabeth Gillet
    View author publications

    Search author on:PubMed Google Scholar

  2. Hans H Hattemer
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, E., Hattemer, H. Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63, 135–141 (1989). https://doi.org/10.1038/hdy.1989.84

Download citation

  • Received: 17 February 1989

  • Issue date: 01 August 1989

  • DOI: https://doi.org/10.1038/hdy.1989.84

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Gene flow, mating patterns and inbreeding depression in Roupala montana var. brasiliensis, a neotropical timber species

    • Fernanda B. Pereira
    • Alexandre M. Sebbenn
    • Evandro V. Tambarussi

    New Forests (2023)

  • Small but not isolated: a population genetic survey of the tropical tree Cariniana estrellensis (Lecythidaceae) in a highly fragmented habitat

    • M C Guidugli
    • A G Nazareno
    • A L Alzate-Marin

    Heredity (2016)

  • Transcriptome versus Genomic Microsatellite Markers: Highly Informative Multiplexes for Genotyping Abies alba Mill. and Congeneric Species

    • Dragos Postolache
    • Cristina Leonarduzzi
    • Giovanni Giuseppe Vendramin

    Plant Molecular Biology Reporter (2014)

  • Impact of monoecy in the genetic structure of a predominately dioecious conifer species, Araucaria angustifolia (Bert.) O. Kuntze

    • M. A. Danner
    • J. Z. Ribeiro
    • A. M. Sebbenn

    Plant Systematics and Evolution (2013)

  • Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis

    • Eduardo Andrade Bressan
    • Alexandre Magno Sebbenn
    • Antonio Figueira

    Tree Genetics & Genomes (2013)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited