Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Synaptonemal complex formation in Avena polyploids
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1989

Synaptonemal complex formation in Avena polyploids

  • M Jones1,
  • H Rees1 &
  • G Jenkins1 

Heredity volume 63, pages 209–219 (1989)Cite this article

  • 662 Accesses

  • 16 Citations

  • Metrics details

Abstract

Avena maroccana (2n = 4x = 28) and A. sativa (2n = 6x = 42) are allopolyploids. Reconstructions from electron micrographs of synaptonemal complexes in serial sections of pollen mother cells showed that associations at zygotene and subsequent stages of meiosis are confined to homologous chromosomes only, with the result that only bivalents are generated. Such “classical” behaviour contrasts sharply with that in allopolyploids of wheat, Lolium and Scilla. In these pairing at zygotene involves homoeologous as well as homologous chromosomes, generating not only bivalents but multivalents which are “resolved” to bivalents prior to first metaphase.

An analysis is presented, also, of structural and genetic factors which influence the distribution of pairing within and between chromosomes at zygotene in the Avena species.

Similar content being viewed by others

Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition

Article 14 March 2022

Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.)

Article Open access 11 January 2022

SCEP1 and SCEP2 are two new components of the synaptonemal complex central element

Article 16 November 2023

Article PDF

References

  • Evans, G M, Macefield, A J (1973). The effect of B chromosomes on homoeologous pairing in species hybrids. 1. Lolium temulentum × Lolium perenne. Chromosoma, 41, 63–73.

    Article  Google Scholar 

  • Gauthier, F M, McGinnis, R C (1968). The Meiotic behaviour of a nulli-haploid plant in Avena Sativa L. Can J Genet Cytol, 10, 186–189.

    Article  Google Scholar 

  • Hobolth, P (1981). Chromosome pairing in allohexaploid wheat var. Chinese Spring. Transformation of multivalents into bivalents, a mechanism for exclusively bivalent formation. Carlsberg Res Commun, 46, 129–173.

    Article  Google Scholar 

  • Holm, P B (1986). Chromosome pairing and chiasma formation in allohexaploid wheat, Triticum aestivum analysed by spreading of meiotic nuclei. Carlsberg Res Commun, 51, 239–294.

    Article  Google Scholar 

  • Holm, P B (1988). Chromosome pairing and synaptonemal complex formation in hexaploid wheat, Monoisosomic and diisosomic for the long arm of chromosome 5B. Carlsberg Res Commun, 53, 111–133.

    Article  Google Scholar 

  • Holm, P B, Wang, X (1988). The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chinese Spring. Carlsberg Res Commun, 53, 191–208.

    Article  Google Scholar 

  • Jenkins, G (1983). Chromosome pairinginTriticum aestivum cv. Chinese Spring. Carlsberg Res Commun, 48, 255–283.

    Article  Google Scholar 

  • Jenkins, G (1985a). Synaptonemal complex formation in hybrids of Lolium temulentum × Lolium perenneI. Diploid. Chromosoma, 92, 81–88.

    Article  Google Scholar 

  • Jenkins, G (1985b). Synaptonemal complex formation in hybrids of Lolium temulentum × Lolium perenne II. Triploid. Chromosoma, 92, 387–390.

    Article  Google Scholar 

  • Jenkins, G (1986). Synaptonemal complex formation in hybrids of Lolium temulentum × Lolium perenne III. Tetraploid. Chromosoma, 93, 413–419.

    Article  Google Scholar 

  • Jenkins, G, White, J, Parker, J S (1988). Elimination of multivalents during meiotic prophasein Scilla autumnalis II. Tetraploid. Genome, 30, 940–946.

    Article  Google Scholar 

  • Kimber, G, Riley, R (1963). The relationships of the diploid progenitors of hexaploid wheat. Can J Genet Cytol, 5, 83–88.

    Article  Google Scholar 

  • Leggett, J M (1977). The meiotic be haviour of aneupolyhaploids of the cultivated oat Avena sativa(2n=6x=42). Can J Genet Cytol, 19, 651–656.

    Article  Google Scholar 

  • Loidl, J (1988). SC formation in some allium species and a discussion of the significance of SC-associated structures and of the mechanisms for pre-Synaptic alignment. Pl Syst Evol, 158, 117–131.

    Article  Google Scholar 

  • Mather, K (1943). Statistical analysis in Biology. Methuen (London).

  • Nishiyama, I, Yabuno, T (1975). Meiotic chromosome pairing in two interspecific hybrids and a criticism of the evolutionary relationship of diploid. Avena Jap J Genet, 50, 443–451.

    Article  Google Scholar 

  • Rajhathy, T (1963). A standard karyotype of Avena sativa. Can J Genet Cytol, 5, 127–132.

    Article  Google Scholar 

  • Rajhathy, T (1971). The allopolyploid model in Avena. Stadler Symposia, 3, 71–87.

    Google Scholar 

  • Rajhathy, T, Dyck, P L (1963). Chromosomal differentiation and speciation in diploid Avena II. Karyotype of Avena pilosa. Can J Genet Cytol, 5, 175–179.

    Article  Google Scholar 

  • Rajhathy, T, Thomas, H (1967). Chromosomal differentiation and speciation in diploid AvenaIII. Mediterranean wild populations. Can J Genet Cytol, 3, 372–377.

    Article  Google Scholar 

  • Rajhathy, T, Thomas, H (1972). Genetic control of chromosome pairing in hexaploid oats. Nature New Biology, 239, 217–219.

    Article  CAS  Google Scholar 

  • Rajhathy, T, Thomas, H (1974). Cytogenetics of oats (Avena L.). Misc Pub Genet Soc Canada, 2, 1–91.

    Google Scholar 

  • Riley, R, Chapman, V (1958). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182, 713–715.

    Article  Google Scholar 

  • Sears, E R (1941). Chromosome pairing and fertility in hybrids and amphidiploids in theTriticinae. Res Bull Missouri Agric Expt Sta, 337.

  • Sears, E R, Okamoto, M (1958). Intergenomic chromosome relationships in hexaploid wheat (Abstr.). Proc X Int Cong Genet, 2, 258–259.

    Google Scholar 

  • Thomas, H. Cytogenetics of Avena. Oat Monograph, 2nd ed, (In press).

  • Wells, B (1974). A convenient technique for the collection of ultrathin sections. Micron, 5, 79–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Agricultural Botany, University College of Wales, Dyfed, Aberystwyth, SY23 3DD, UK

    M Jones, H Rees & G Jenkins

Authors
  1. M Jones
    View author publications

    Search author on:PubMed Google Scholar

  2. H Rees
    View author publications

    Search author on:PubMed Google Scholar

  3. G Jenkins
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M., Rees, H. & Jenkins, G. Synaptonemal complex formation in Avena polyploids. Heredity 63, 209–219 (1989). https://doi.org/10.1038/hdy.1989.94

Download citation

  • Received: 03 March 1989

  • Issue date: 01 October 1989

  • DOI: https://doi.org/10.1038/hdy.1989.94

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Synaptonemal complex formation in two allohexaploid Festuca species and a pentaploid hybrid

    • Huw M Thomas
    • B J Thomas

    Heredity (1993)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited