Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic variation between and within populations of a perennial grass: Arrhenatherum elatius
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1990

Genetic variation between and within populations of a perennial grass: Arrhenatherum elatius

  • Alexis Ducousso1,
  • Daniel Petit1,
  • Myrian Valero1 &
  • …
  • Philippe Vernet1 

Heredity volume 65, pages 179–188 (1990)Cite this article

  • 820 Accesses

  • 39 Citations

  • Metrics details

Abstract

Three pairs of adjacent populations of Arrhenatherum elatius were studied both for their genetic diversity and for their genotypic structure. Each pair consisted of one population on a normal soil type and the other on spoil from mining.

Using morphological characters as well as allozyme markers, the genetic diversity in populations on toxic soils (mining spoil) was found to be higher than in populations in normal pasture. This suggests that the tolerant populations have been built up from a large number of tolerant genotypes emanating from normal pasture populations in which tolerance genes are not uncommon. The higher genetic diversity of the tolerant population has then been maintained by the spatial heterogeneity of toxic habitats, or less intense selective forces of biotic origin (e.g. intraspecific competition) or by a more open breeding system.

Variations in allozymes gave interesting clues. No clear cut differences in the genetic structure between pairs of populations were found, but there was a higher heterozygote deficit in denser populations.

This might arise from inbreeding because of a more limited gene flow in dense populations. The higher genetic diversity of sparse populations on toxic soil might partly result from the effectively greater gene flow into these populations in which individuals must trap pollen from longer distances than do individuals in dense populations.

Similar content being viewed by others

Weak founder effects but significant spatial genetic imprint of recent contraction and expansion of European beech populations

Article 23 November 2020

High gene flow maintains genetic diversity following selection for high EPSPS copy number in the weed kochia (Amaranthaceae)

Article Open access 02 November 2020

Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles

Article Open access 17 August 2021

Article PDF

References

  • Antonovics, J. 1968. Evolution in closely adjacent plant population. V. Evolution of self fertility. Heredity, 23, 219–238.

    Article  Google Scholar 

  • Cahalan, C M, and Gliddon, C. 1985. Genetic neighbourhood in Primula vulgaris. Heredity, 54 (1), 65–70.

    Article  Google Scholar 

  • Cuguen, J, Acheroy, M, Loutfi, A, Petit, D, and Vernet, P H. 1989. Breeding system differentiation in Arrhenatherum elatius populations: evolution toward selfing? Evol Trends in Plants, 3, 17–24.

    Google Scholar 

  • Ducousso, A. 1985. Comparaison de Populations Adjacentes d'Arrhenatherum elatius sur des Sols Normaux et Toxiques: Analyse de la Diversité Génétique et du Régime de Ia Reproduction. Thesis, University of Lille.

    Google Scholar 

  • Ducousso, A, Loutfi, A, Petit, D, Acheroy, M, Valero, M, and Vernet, P H. 1987. Structure génétique et régime de la reproduction chez Arrhenatherum elatius L., Coll Nat CNRS “Biologie des Populations”, Lyon, 4–7 Sept. 1986, pp. 317–319.

  • Ellstrand, N C, Torres, A M, and Levin, D A. 1978. Density and the rate of apparent outcrossing in Helianthus annuus (Asteraceae). Syst Bot, 3, 403–407.

    Article  Google Scholar 

  • Gartside, D W, and McNeilly, T. 1974. The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity, 3, 335–348.

    Article  Google Scholar 

  • Gouyon, P H, Lumaret, R, Valdeyron, G, and Vernet, P H. 1983. Reproductive strategies and disturbance by Man, in Mooney, H. A. and Godron, M. (eds) Disturbance and Ecosystems Component of response Ecological Studies 44, Springer-Verlag, pp. 214–225.

    Chapter  Google Scholar 

  • Hedrick, P W, Ginevan, M E, and Ewing, E P. 1976. Genetic polymorphism in heterogeneous environments. Ann Rev Ecol Syst, 7, 1–32.

    Article  Google Scholar 

  • Hutcheson, K. 1970. A test for comparing diversities based en the Shannon formula. J theor Biol, 29, 151–154.

    Article  CAS  Google Scholar 

  • Lefebvre, C. 1970. Self-fertility in maritime and zinc mine populations of Armeria maritima (Mill.) Willd. Evolution, 24, 571–577.

    Article  CAS  Google Scholar 

  • Lefebvre, C, and Kakes, P. 1978. Variation electrophorétique des estérases des feuilles d'Armeria maritima (Mill.) Willd: quelques aspects taxonomiques etévolutifs. Bull Soc Roy Bot Belg, 114, 31–40.

    Google Scholar 

  • Loutfi, A. 1987. Variabilitédu Régime de la Reproduction au Sein des Populations d'Arrhenatherum elatius de Milieux Contrastés. Thesis, University of Lille.

    Google Scholar 

  • Lumaret, R. 1981. Structure génétique d'un complexe polyplolde Dactylis glomerata L. Thesis, U.S.T.L. Montpellier, 168p.

  • McNeilly, T, and Antonovics, J. 1968. Evolution in closely adjacent plant populations. IV. Barriers to gene flow. Heredity, 40, 371–384.

    Google Scholar 

  • Pfitzenmeyer, C D. 1962. Biological flora of the British Isles: Arrhenatherum Elatius (L.) J. et C. Presl. J Ecol, 50, 235–245.

    Article  Google Scholar 

  • Shannon, C E, and Weaver, W. 1963. The Mathematical Theory of Communication. Urbana Univ. Illinois Press.

  • Sokal, R R, and Rohlf, F J. 1981. Biometry: The Principles and Practice of Statistics in Biological Research. Second edn. W. H. Freeman, New York, USA.

    Google Scholar 

  • Soule, M E, and Simberloff, D. 1986. What do genetics and ecology tell us about design of nature reserves? Biolog Cons, 35, 19–40.

    Article  Google Scholar 

  • Sulinowski, S. 1965. Variation of forms and biology of flowering in Arrhenatherum elatius (L.) PB. Part II. Effects of self and cross pollination on seed setting in Arrhenatherum elatius. Genetica Polonica, 6, 105–118.

    Google Scholar 

  • Verkleij, J A C, Bast-Cramer, W B, and Levering, H. 1985. Effect of heavy metal stress on the genetic structure of populations of Silene cucubalus. In Haeck, J. and Woldendorp, J. W. (eds) Structure and Fonctionning of Plant Populations, vol. 2, North-Holland Publishing Company, Amsterdam, pp. 355–365.

    Google Scholar 

  • Wahlund, S. 1928. Zuzammenzung von populationen und korelationscheinungen vom standpunkt der vererbungslehere aus betrachtet. Hereditas, 11, 65–106.

    Article  Google Scholar 

  • Wright, S. 1969. Theory of Gene Frequencies. University of Chicago Press, Chicago, vol. 2.

    Google Scholar 

  • Wu, L, Bradshaw, A D, and Thurman, D A. 1975. The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity, 34, 165–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Génétique et Evolution des Populations Végétales, U.R.A. CNRS 1185, Université de Lille 1, Villeneuve d'Ascq Cedex, 59655, France

    Alexis Ducousso, Daniel Petit, Myrian Valero & Philippe Vernet

Authors
  1. Alexis Ducousso
    View author publications

    Search author on:PubMed Google Scholar

  2. Daniel Petit
    View author publications

    Search author on:PubMed Google Scholar

  3. Myrian Valero
    View author publications

    Search author on:PubMed Google Scholar

  4. Philippe Vernet
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducousso, A., Petit, D., Valero, M. et al. Genetic variation between and within populations of a perennial grass: Arrhenatherum elatius. Heredity 65, 179–188 (1990). https://doi.org/10.1038/hdy.1990.86

Download citation

  • Received: 12 February 1990

  • Issue date: 01 October 1990

  • DOI: https://doi.org/10.1038/hdy.1990.86

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Low genetic differentiation despite high fragmentation in the endemic serpentinophyte Minuartia smejkalii (M. verna agg., Caryophyllaceae) revealed by RADSeq SNP markers

    • Bojana Stojanova
    • Maria Šurinová
    • Hana Pánková

    Conservation Genetics (2020)

  • Genetic diversity and association mapping of cadmium tolerance in bermudagrass [Cynodon dactylon (L.) Pers.]

    • Yan Xie
    • Xiaoyan Sun
    • Liang Chen

    Plant and Soil (2015)

  • Genetic Variation in Three Closely Related Minuartia (Caryophyllaceae) Species Endemic to Greece: Implications for Conservation Management

    • Antonios Augustinos
    • Kostas Sotirakis
    • Vassilis Papasotiropoulos

    Folia Geobotanica (2014)

  • Vulnerability of wild American ginseng to an extreme early spring temperature fluctuation

    • Sara Souther
    • James B. McGraw

    Population Ecology (2011)

  • Chloroplast microsatellites reveal that metallicolous populations of the Mediterranean shrub Cistus ladanifer L have multiple origins

    • Celestino Quintela-Sabarís
    • Giovanni Giuseppe Vendramin
    • M. Isabel Fraga

    Plant and Soil (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited