Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1991

On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions

  • B J Zwaan1,
  • R Bijlsma1 &
  • R F Hoekstra2 

Heredity volume 66, pages 29–39 (1991)Cite this article

  • 8429 Accesses

  • 150 Citations

  • Metrics details

Abstract

The developmental theory of ageing predicts a positive correlation between developmental time and adult longevity. Experiments that vary larval density and food level have been carried out to test this prediction. The results show differences in viability, developmental time, starvation resistance and adult longevity. It is concluded that pre-adult developmental time is not a causal factor for the determination of adult longevity in Drosophila melanogaster. The observed variation in adult longevity is discussed in relation to viability selection and changed adult physiology.

Similar content being viewed by others

Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions

Article Open access 09 June 2022

Dietary stress remodels the genetic architecture of lifespan variation in outbred Drosophila

Article 22 December 2022

A defined diet for pre-adult Drosophila melanogaster

Article Open access 23 March 2024

Article PDF

References

  • Arking, R. 1987. Successful selection for increased longevity in Drosophila: analysis of the survival data and presentation of a hypothesis on the genetic regulation of longevity. Exp Geront, 22, 199–220.

    Article  CAS  Google Scholar 

  • Barker, K. 1961. An analysis of factors which determine success in competition for food among larvae of Drosophila melanogaster. Arch Need Zool, 14, 200–281.

    Google Scholar 

  • Barker, J S F, and Podger, R N. 1970. Interspecific competition between Drosophila melanogaster and Drosophila simulons: effects of larval density on viability, developmental period and adult body weight. Ecology, 51, 170–189.

    Article  Google Scholar 

  • Boulétreau-Merle, J. 1988. Biological factors. In: Lints, F. A. and Soliman, M. H. (eds) Drosophila as a Model Organism for Ageing Studies, Blackie, London, pp. 85–96.

    Chapter  Google Scholar 

  • David, J R, Cohet, Y, and Fouillet, P. 1971. Ralentissement de la croissance et longévité des drosophiles adultes: influence d'une sous alimentation larvaire. C R Soc Biol, 165, 2110–2112.

    Google Scholar 

  • David, J R, Cohet, Y, and Fouillet, P. 1975a. Physiologie de l'inanition et utilisation des réserves chez les adultes de Drosophila melanogaster. Arch Zool Exp, 116, 579–590.

    Google Scholar 

  • David, J R, Cohet, Y, and Fouillet, P. 1975b. La résistance à l'inanition chez les insectes: importance de la quantité des réserves lipidiques chez les adultes de Drosophila melanogaster. C R Acad Sci Paris, 280, 2571–2574.

    CAS  Google Scholar 

  • David, J R, Allemand, R, Van Herrewege, J, and Cohet, Y. 1983. Ecophysiology:abiotic factors. In: Ashburner, M., Carson, H. L. and Thompson, J. N. (eds) The Genetics and Biology of Drosophila, vol. 3d, Academic Press, London, pp. 105–170.

    Google Scholar 

  • Economos, A C, and Lints, F A. 1984a. Growth rate and lifespan in Drosophila. I. Methods and mechanisms of variation of growth rate. Mech Age Dev, 27, 1–13.

    Article  CAS  Google Scholar 

  • Economos, A C, and Lints, F A. 1984b. Growth rate and lifespan in Drosophila. II. A biphasic relationship between growth rate and life-span. Mech Age Dev, 27, 143–151.

    Article  CAS  Google Scholar 

  • Economos, A C, and Lints, F A. 1986. Developmental temperature and life-span in Drosophila melanogaster. I. Constant developmental temperature: evidence for physiological adaptation in a wide temperature range. Gerontology, 32, 18–27.

    Article  CAS  Google Scholar 

  • Fairbanks, L D, and Burch, G E. 1970. Rate of water loss and water and fat content of adult Drosophila melanogaster of different ages. J Insect Physiol, 16, 1429–1436.

    Article  CAS  Google Scholar 

  • Fairbanks, L D, and Burch, G E. 1974. Changes with age in the ability of adult Drosophila melanogaster to respond to yeast feeding. Physiol Zool, 47, 190–197.

    Article  Google Scholar 

  • Finney, D J. 1947. Probit Analysis. Cambridge Academic Press, Cambridge.

    Google Scholar 

  • Geer, B W, Olander, R M, and Sharp, P L. 1970. Quantification of dietary choline utilization in adult Drosophila melanogaster by radioisotope methods. J Insect Physiol, 16, 33–43.

    Article  CAS  Google Scholar 

  • Kirkland, J L. 1989. Evolution and ageing. Genome, 31, 398–405.

    Article  CAS  Google Scholar 

  • Lints, F A. 1978. Genetics and Ageing. Interdisciplinary Topics in Gerontology, Karger, Basel.

    Google Scholar 

  • Lints, F A. 1985. Insects. In: Finch, C. E. and Schneider, E. L. (eds) Handbook of the Biology of Ageing, Van Nostrand Reinhold Company, New York, pp. 146–169.

    Google Scholar 

  • Lints, F A. 1988. Genetics. In: Lints, F. A. and Soliman, M. H. (eds) Drosophila as a Model Organism for Ageing Studies, Blackie, London, pp. 99–118.

    Chapter  Google Scholar 

  • Lints, F A, and Lints, C V. 1969. Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids. I. Preimaginal population density. Exp Geront, 4, 231–244.

    Article  CAS  Google Scholar 

  • Lints, F A, and Lints, C V. 1971a. Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids. III. Developmental speed and lifespan. Exp Geront, 6, 427–445.

    Article  CAS  Google Scholar 

  • Lints, F A, and Lints, C V. 1971b. Relationship between growth and ageing in Drosophila. Nature New Biol, 229, 86–87.

    Article  CAS  Google Scholar 

  • Luckinbill, L A, and Clare, M J. 1985. Selection for life-span in Drosophila melanogaster. Heredity, 55, 9–18.

    Article  Google Scholar 

  • Luckinbill, L S, and Clare, M J. 1986. A density threshold for the expression of longevity in Drosophila melanogaster. Heredity, 56, 329–335.

    Article  Google Scholar 

  • Mayer, P J, and Baker, G T. 1985. Genetic aspects of Drosophila as a model system of eukaryotic aging. Int Rev Cytol, 95, 61–102.

    Article  CAS  Google Scholar 

  • Medawar, P B. 1952. An Unsolved Problem of Biology H. K. Lewis, London.

    Google Scholar 

  • Miller, R S, and Thomas, J L. 1958. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology, 39, 118–125.

    Article  Google Scholar 

  • Muller, H J. 1963. Mechanisms of life-span shortening. In: Harris, R. J. C. (ed) Cellular Basis and Aetiology of Late Somatic Effects of Ionizing Radiation, Academic Press, New York, pp. 235–245.

    Google Scholar 

  • Partridge, L. 1986. Sexual activity and life-span. In: Collatz, K. G. and Sohal, R. S. (eds) Insect Aging, Springer-Verlag, Berlin, pp. 45–54.

    Chapter  Google Scholar 

  • Prout, T, and McChesney, F. 1985. Competition among immatures affects their adult fertility: population dynamics. Am Nat, 126, 521–558.

    Article  Google Scholar 

  • Quintana, A, and Prevosti, A. 1990. Genetic and environmental factors in the resistance of Drosophila subobscura adults to high temperature shock. I. Breeding temperature and crowding. Theor Appl Genet, 79, 103–107.

    Article  CAS  Google Scholar 

  • Rose, M R. 1984. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–1010.

    Article  Google Scholar 

  • Service, P M. 1987. Physiological mechanisms of increased stress resistance in Drosophila melanogaster selected for postponed senescence. Physiol Zool, 60, 321–326.

    Article  Google Scholar 

  • Service, P M. 1989. The effect of mating status on life-span, egg laying, and starvation resistance in Drosophila melanogaster in relation to selection on longevity. J Insect Physiol, 35, 447–452.

    Article  Google Scholar 

  • Service, P M, Hutchinson, E W, MacKinley, M D, and Rose, M R. 1985. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool, 58, 380–389.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1969. Biometry W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Williams, G C. 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, University of Groningen, Kerklaan 30, Haren, 9751 NN, The Netherlands

    B J Zwaan & R Bijlsma

  2. Department of Genetics, Agricultural University, Dreyenlaan 2, Wageningen, 6703 HA, The Netherlands

    R F Hoekstra

Authors
  1. B J Zwaan
    View author publications

    Search author on:PubMed Google Scholar

  2. R Bijlsma
    View author publications

    Search author on:PubMed Google Scholar

  3. R F Hoekstra
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwaan, B., Bijlsma, R. & Hoekstra, R. On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions. Heredity 66, 29–39 (1991). https://doi.org/10.1038/hdy.1991.4

Download citation

  • Received: 09 April 1990

  • Issue date: 01 February 1991

  • DOI: https://doi.org/10.1038/hdy.1991.4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • ageing
  • developmental time
  • Drosophila melanogaster
  • longevity
  • starvation

This article is cited by

  • Detecting purging of inbreeding depression by a slow rate of inbreeding for various traits: the impact of environmental and experimental conditions

    • Jørgen Bundgaard
    • Volker Loeschcke
    • Kuke Bijlsma

    Heredity (2021)

  • Neglecting larval rearing conditions in Drosophila melanogaster can negatively impact research on ageing

    • Eric Le Bourg

    Biogerontology (2021)

  • Integrative developmental ecology: a review of density-dependent effects on life-history traits and host-microbe interactions in non-social holometabolous insects

    • Anh The Than
    • Fleur Ponton
    • Juliano Morimoto

    Evolutionary Ecology (2020)

  • An overview of two decades of diet restriction studies using Drosophila

    • Sudhakar Krittika
    • Pankaj Yadav

    Biogerontology (2019)

  • Larval crowding results in hormesis-like effects on longevity in Drosophila: timing of eclosion as a model

    • O. V. Lushchak
    • H. S. Karaman
    • A. M. Vaiserman

    Biogerontology (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited