Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 1991

Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions

  • Günther B Hartl1,
  • Gérard Lang2,
  • François Klein3 &
  • …
  • Rudolf Willing1 

Heredity volume 66, pages 343–350 (1991)Cite this article

  • 1448 Accesses

  • 52 Citations

  • Metrics details

Abstract

Morphological characters in red deer ( Cervus elaphus), which serve as criteria for selective hunting, were examined in relation to electrophoretic variation in three populations from the Vosges in eastern France. From the polymorphic loci examined, certain alleles at Idh-2, Me-1 and Acp-1 showed significant associations with a special development of body and antler characters selected for by hunters. Idh-2125 was associated with larger hind foot length in females and a higher number of antler points in males. Me-190 and Acp-1100 were associated with small spikes. The populations studied differed from one another in the duration and intensity of selective hunting and the increase or decrease in the respective allele frequencies could be explained by selection for large body size, a high number of antler points and against small spikes in yearlings, rather than by genetic drift. Among other morphological characters examined, the length of the main beam was significantly associated with the allele Acp-2100. In contrast, no associations could be detected between overall heterozygosity and the development or the degree of asymmetry (in paired structures) of any of the morphological traits in question. Although no obvious differences in the overall values of polymorphism or heterozygosity were found between the populations, selective hunting leads towards a change in allele frequencies and eventually to the loss of one or the other rare allele.

Similar content being viewed by others

Selection, recombination and population history effects on runs of homozygosity (ROH) in wild red deer (Cervus elaphus)

Article Open access 17 February 2023

RXFP2-positive mesenchymal stem cells in the antlerogenic periosteum contribute to postnatal development of deer antlers

Article Open access 22 April 2025

Spatial variation in red deer density in a transboundary forest ecosystem

Article Open access 20 March 2023

Article PDF

References

  • Ayala, F J. 1982. Population and Evolutionary Genetics: A Primer. Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Barton, N H, and Slatkin, M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409–415.

    Article  Google Scholar 

  • Clutton-Brock, T H, Guinness, F E, and Albon, S D. 1982. Red Deer — Behavior and Ecology of Two Sexes. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Fleischer, R C, Johnston, R F, and Klitz, W J. 1983. Allozymic heterozygosity and morphological variation in house sparrows. Nature, 304, 628–630.

    Article  CAS  Google Scholar 

  • Harmel, D E. 1983. Effects of genetics on antler quality and body size in white-tailed deer. In: Brown, R. (ed.), Antler Development in Cervidae Caesar Kleberg Foundation, Kingsville, pp. 339–348.

    Google Scholar 

  • Hartl, G B. 1989. Die genetische Variabilität von Wildsäugern und die Folgen der Isolation. In: Schneider, E., Oelke, H. and Gross, H. (eds), Die Illusion der Arche Noah — Gefahren für die Arterhaltung durch Gefangenschaftszucht Echo-Verlag, Göttingen, pp. 127–138.

    Google Scholar 

  • Hartl, G B, and Höger, H. 1986. Biochemical variation in purebred and crossbred strains of domestic rabbits (Oryctolagus cuniculus L.). Genetical Research, Cambridge, 48, 27–34.

    Article  CAS  Google Scholar 

  • Hartl, G B, and Reimoser, F. 1988. Biochemical variation in roe deer (Capreolus capreolus L.): are r-strategists among deer genetically less variable than K-strategists? Heredity, 60, 221–227.

    Article  Google Scholar 

  • Hartl, G B, Göltenboth, R, Grillitsch, M, and Willing, R. 1988a. On the biochemical systematics of the Bovini. Biochem System Ecol, 16, 575–579.

    Article  CAS  Google Scholar 

  • Hartl, G B, Willing, R, Grillitsch, M, and Klansek, E. 1988b. Biochemical variation in Mustelidae: are carnivores genetically less variable than other mammals. Zool Anzeiger, 221, 81–90.

    CAS  Google Scholar 

  • Hartl, G B, Willing, R, Lang, G, Klein, F, and Köller, J. 1990. Genetic variability and differentiation in red deer (Cervus elaphus L.) of Central Europe. Genetics, Selection, Evolution, 22, 289–306.

    Article  Google Scholar 

  • Johns, P E, Baccus, R, Manlove, M N, Pinder, J E III, and Smith, M H. 1977. Reproductive patterns, productivity and genetic variability in adjacent white-tailed deer populations. Proc Ann Conf Southeastern Assoc Fish Wildl Agencies, 31, 167–172.

    Google Scholar 

  • Klein, F. (1987). La gestion du cerf (Cervus elaphus) dans le secteur de La Petite Pierre. Ciconia, 11, 97–108.

    Google Scholar 

  • Lang, G. 1987. Gestion des populations de cervidés — réflexions sur des problèmes de polymorphisme génétique Thèse de Diplôme d'Etat de Docteur en Pharmacie, Université Louis Pasteur, Strasbourg.

    Google Scholar 

  • Lang, G. 1989. Guidelines for the collection of morphological data in red deer. In: Hartl, G. B. (ed.), Proceedings of the 2nd Symposium for Planning a CIC Red Deer Genetics Project, pp. 24–30. Vet. Med. University, Vienna.

    Google Scholar 

  • Lowe, V P W. 1969. Population dynamics of the red deer (Cervus elaphus L.) on Rhum. J Anim Ecol, 38, 425–457.

    Article  Google Scholar 

  • Lucotte, G. 1983. Génétique des populations. Inter Editions, Paris.

    Google Scholar 

  • Marchinton, R L, Fudge, J R, Fortson, J C, and Miller, K V. 1987. Genetic stock and environment as factors in production of record class antlers. In: Bobek, B., Perzanowski, K, Regelin, W. L. and Tertil, R. (eds), Abstracts of the XVIIIth Congress of the International Union of Game Biologists — Supplement, Jagiellonian University, Krakow, p. 114 (comprehensive manuscript obtained from the authors).

    Google Scholar 

  • Mitchell, B. 1963. Determination of age in Scottish red deer from growth layers in dental cement. Nature, 198, 350–351.

    Article  Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution. Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Pemberton, J M, Albon, S D, Guinness, F E, and Clutton-Brock, T H. 1988. Genetic variation and juvenile survival in red deer. Evolution, 42, 921–934.

    Article  CAS  Google Scholar 

  • Røed, K H. 1987. Transferrin variation and body size in reindeer, Rangifer tarandus L. Hereditas, 106, 67–71.

    Article  Google Scholar 

  • Ryman, N, Baccus, R, Reuterwall, C, and Smith, M H. 1981. Effective population size, generation interval and potential loss of genetic variability in game species under different hunting regimes. Oikos, 36, 257–266.

    Article  Google Scholar 

  • Schonewald-Cox, C M, Chambers, S M, MacBryde, B, and Thomas, W L. (eds). 1983. Genetics and Conservation. Benjamin Cummings, London.

    Google Scholar 

  • Scribner, K T, Smith, M H, and Johns, P E. 1989. Environmental and genetic components of antler growth in white-tailed deer. J Mammal, 70, 284–291.

    Article  Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    Article  Google Scholar 

  • Slatkin, M, and Barton, N H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43, 1349–1368.

    Article  Google Scholar 

  • Smith, M H, Chesser, R K, Cothran, E G, and Johns, P E. 1983. Genetic variability and antler growth in a natural population of white-tailed deer. In: Brown, R. (ed.), Antler Development in Cervidae Caesar Kleberg Foundation, Kings ville, pp. 365–387.

    Google Scholar 

  • Soulé, M E. 1979. Heterozygosity and developmental stability: another look. Evolution, 33, 396–401.

    Article  Google Scholar 

  • Soulé, M E. (ed). 1987. Viable Populations for Conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Suttie, J M, and Kay, R N B. 1983. The influence of nutrition and photoperiod on the growth of antlers of young red deer. In: Brown, R. (ed.), Antler Development in Cervidae Caesar Kleberg Foundation, Kingsville, pp. 61–71.

    Google Scholar 

  • Templeton, J W, Sharp, R M, Williams, J, Davis, D, Harmel, D, Armstrong, B, and Wardroup, S. 1983. Single dominant major gene effect on the expression of antler point number in the white-tailed deer. In: Brown, R. (ed.), Antler Development in Cervidae Caesar Kleberg Foundation, Kingsville, p. 469.

    Google Scholar 

  • Ueckermann, E. (1987). Managing German red deer (Cervus elaphus L.) populations. In: Wemmer, C. (ed.), Biology and Management of the Cervidae Smithsonian Institution Press, Washington/DC, pp. 505–516.

    Google Scholar 

  • Watt, W B. 1985. Bioenergetics and evolutionary genetics: opportunities for new synthesis. Am Nat, 125, 118–143.

    Article  CAS  Google Scholar 

  • Williams, J D, Harmel, D E, Armstrong, W E, and Wardroup, S E. 1983. Antler development in the white-tailed deer. In: Brown, R. (ed.), Antler Development in Cervidae Caesar Kleberg Foundation, Kingsville, p. 468.

    Google Scholar 

  • Zouros, E, Romero-Dorey, M, and Mallet, A L. 1988. Heterozygosity and growth in marine bivalves: further data and possible explanations. Evolution, 42, 1332–1341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the local hunters in the Alsace and Lorraine for collecting samples and for financial support. The excellent technical assistance of Anita Haiden and the graphical help of Andreas Körber are gratefully acknowledged.

Author information

Authors and Affiliations

  1. Forschungsinstitut für Wildtierkunde der Veterinärmedizinischen Universität Wien, Savoyenstrasse 1, Vienna, A-1160, Austria

    Günther B Hartl & Rudolf Willing

  2. 26a, rue principale, Gries, 67240, France

    Gérard Lang

  3. Office National de la Chasse - CNERA Cervidés Sanglievs Au Bord du Rhin, Gerstheim, 67150, France

    François Klein

Authors
  1. Günther B Hartl
    View author publications

    Search author on:PubMed Google Scholar

  2. Gérard Lang
    View author publications

    Search author on:PubMed Google Scholar

  3. François Klein
    View author publications

    Search author on:PubMed Google Scholar

  4. Rudolf Willing
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartl, G., Lang, G., Klein, F. et al. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66, 343–350 (1991). https://doi.org/10.1038/hdy.1991.43

Download citation

  • Received: 23 July 1990

  • Issue date: 01 June 1991

  • DOI: https://doi.org/10.1038/hdy.1991.43

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • antler development
  • Red deer
  • selective hunting

This article is cited by

  • Fine-scale social and spatial genetic structure in Sitka black-tailed deer

    • Kevin E. Colson
    • Todd J. Brinkman
    • Kris J. Hundertmark

    Conservation Genetics (2013)

  • Low genetic variation support bottlenecks in Scandinavian red deer

    • Hallvard Haanes
    • Knut H. Røed
    • Olav Rosef

    European Journal of Wildlife Research (2011)

  • Fluctuating asymmetry and genetic variability in the roe deer (Capreolus capreolus): a test of the developmental stability hypothesis in mammals using neutral molecular markers

    • F E Zachos
    • G B Hartl
    • F Suchentrunk

    Heredity (2007)

  • Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus)

    • D H Nussey
    • J Pemberton
    • L E B Kruuk

    Heredity (2006)

  • Genetische Strukturen des Rotwildes(Cervus elaphus) in Westdeutschland und deren Bedeutung im Rahmen innovativer Managementkonzepte

    • S. Herzog

    Zeitschrift für Jagdwissenschaft (2000)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited