Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Polymorphism at the Adh and αGpdh loci in Drosophila melanogaster: effects of rearing temperature on developmental rate, body weight, and some biochemical parameters
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1991

Polymorphism at the Adh and αGpdh loci in Drosophila melanogaster: effects of rearing temperature on developmental rate, body weight, and some biochemical parameters

  • L Oudman1,
  • W van Delden1,
  • A Kamping1 &
  • …
  • R Bijlsma1 

Heredity volume 67, pages 103–115 (1991)Cite this article

  • 937 Accesses

  • 41 Citations

  • Metrics details

Abstract

The role of developmental time in the world-wide cline of Adh and αGpdh allele frequencies of Drosophila melanogaster, and the relationship with weight and some biochemical characters, were investigated. Experimental strains were constructed with different combinations of Adh and αGpdh alleles but with similar genetic background. Developmental time, adult weight, protein-and triglyceride-content, and ADH and αGPDH enzyme activity were measured at a rearing temperature of 20, 25 and 29°C. Genotype effects were found in all studied characters. In general the developmental times of genotypes were: AdhFF < AdhFS < Adhss and αGpdhFF> αGpdhFS = αGpdhSS. Developmental time and adult weight were strongly affected by rearing temperature. Triglyceride content and ADH and αGPDH enzyme activity were slightly affected by temperature. Interactions between genotype and temperature effects were found for developmental rate, adult weight and protein content. No trade off was observed between developmental time on the one hand and adult weight, protein- and triglyceride-content, and ADH and αGPDH enzyme activity on the other hand. It is argued that developmental rate differences might be one of the underlying mechanisms of the world-wide cline of the Adh and αGPdh allele frequencies.

Similar content being viewed by others

Repeatability of protein structural evolution following convergent gene fusions

Article Open access 22 September 2025

Effect of rhGH treatment on lipidome and brown fat activity in prepuberal small for gestational age children: a pilot study

Article Open access 08 February 2025

Structural analysis of an endogenous 4-megadalton succinyl-CoA-generating metabolon

Article Open access 22 May 2023

Article PDF

References

  • Alahiotis, S N. 1982. Adaptation of Drosophila enzymes to temperature. IV. Natural selection at the alcohol dehydrogenase locus. Genetica, 59, 81–87.

    Article  CAS  Google Scholar 

  • Alahiotis, S N, Miller, S, and Berger, E. 1977. Natural selection at the α-GDH locus in Drosophila. Nature, 269, 144–145.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, P R, Knibb, W R, and Oakeshott, J G. 1987. Observations on the extent and temporal stability of latitudinal clines for alcohol dehydrogenase allozymes and four chromosome inversions in Drosophila melanogaster. Genetica, 75, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, P T, Holland, B, and Courreges, V. 1989. Genotype-by-environment and epistatic interactions in Drosophila melanogaster: the effects of Gpdh allozymes, genetic background and rearing temperature on larval developmental time and viability. Genetics, 122, 859–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley, G C, Niesel, D W, and Wilkins, J R. 1984. Purification and characterization of the naturally occurring allelic variants of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Comp Biochem Physiol, 79B, 23–32.

    CAS  Google Scholar 

  • Bijlsma-Meeles, E, and Bijlsma, R. 1988. The alcohol dehydrogenase polymorphism in Drosophila melanogaster. fitness measurements and predictions under conditions with no alcohol stress. Genetics, 120, 743–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bucolo, G, and David, H. 1973. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem, 19, 476.

    CAS  PubMed  Google Scholar 

  • Cavener, D R. 1983. The response of enzyme polymorphisms to developmental rate selection in Drosophila melanogaster. Genetics, 105, 105–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavener, D R, and Clegg, M T. 1981. Multigenic response to ethanol in Drosophila melanogaster. Evolution, 35, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, G K. 1988. The Drosophila alcohol dehydrogenase gene-enzyme system. Adv Genet, 25, 39–107.

    Article  CAS  Google Scholar 

  • Charles-Palabost, L. 1982. Influence du milieu sur le maintien du polymorphisme de l'α-glycérophosphate déshydrogénase chez Drosophila melanogaster. Arch Zool Exp Gén, 122, 467–477.

    Google Scholar 

  • Clark, A G. 1989. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics, 123, 131–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, A G, and Gellman, W. 1985. A rapid spectrophotometric assay of triglycerides in Drosophila. Dros Inf Serv, 61, 190.

    Google Scholar 

  • David, J R, Allemand, R, Van Herrewege, J, and Cohet, Y. 1983. Ecophysiology: Abiotic factors. In: Ashburner, M, Carson, H. L. and Thompson, J. N. (eds), The Genetics and Biology of Drosophila, Vol. 3d, Academic Press, London, pp. 103–170.

    Google Scholar 

  • Geer, B W, Langevin, M L, and McKechnie, S W. 1985. Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem Genet, 23, 607–622.

    Article  CAS  PubMed  Google Scholar 

  • Geer, B W, McKechnie, S W, and Langevin, M L. 1983. Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. J Nutr, 113, 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, D L, and Clark, A G. 1989. Principles of population genetics. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Heinstra, P W H, Seykens, D, Freriksen, A, and Geer, B W. 1990. Metabolic physiology of alcohol degradation and adaptation in Drosophila larvae as studied by means of carbon-13 nuclear magnetic resonance spectroscopy. Insect Biochem, 20, 343–348.

    Article  CAS  Google Scholar 

  • Heinstra, P W H, Thörig, G E W, Scharloo, W D, Renth, W, and Nolte, R J M. 1988. Kinetics and thermodynamics of ethanol oxidation catalyzed by genetic variants of the alcohol dehydrogenase from Drosophila melanogaster and D. simulans. Biochim biophys Acta, 967, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo, J I, and Rubio, J. 1989. Allozyme polymorphism at the αGpdh and Adh loci and fitness in Drosophila melanogaster. Heredity, 63, 343–352.

    Article  PubMed  Google Scholar 

  • Kerver, J W M, and Van Delden, W. 1985. Development of tolerance to ethanol in relation to the alcohol dehydrogenase locus in Drosophila melanogaster. I. Adult and egg-to-adult survival in relation to ADH activity. Heredity, 55, 355–367.

    Article  CAS  Google Scholar 

  • Knibb, W R, Oakeshott, J G, and Wilson, S R. 1987. Chromosome inversion polymorphisms in Drosophila melanogaster. IV. Inversion and Adh allele frequency changes under selection for different development times. Heredity, 59, 95–104.

    Article  Google Scholar 

  • Kohane, M J, and Parsons, P A. 1986. Environment-dependent fitness differences in Drosophila melanogaster: temperature, domestication and the alcohol dehydrogenase locus. Heredity, 57, 289–304.

    Article  Google Scholar 

  • Laurie-Ahlberg, C C. 1985. Genetic variation affecting the expression of enzyme-coding genes in Drosophila. In: Rattazzi, M. C, Scandalios, J. G. and Whitt, G. S. (eds), Isozymes: Current Topics in Biological and Medical Research, Vol. 12, Alan Liss Inc., New York, pp. 33–88.

    Google Scholar 

  • McElfresh, K C, and McDonald, J F. 1986. The effect of temperature on biochemical and molecular properties of Drosophila alchol dehydrogenase. Biochem Genet, 24, 873–889.

    Article  CAS  PubMed  Google Scholar 

  • McKechnie, S W, Kohane, M, and Philips, S C. 1981. A search for interacting polymorphic enzyme loci in Drosophila melanogaster. In: Gibson, J. B. and Oakeshott, J. G. (eds), Genetic Studies of Drosophila Populations, Australian National University Press, Canberra, pp. 121–138.

    Google Scholar 

  • McKechnie, S W, and Geer, B W. 1988. The epistasis of Adh and Gpdh allozymes and variation in the ethanol tolerance of Drosophila melanogaster larvae. Genet Res, Camb, 52, 179–184.

    Article  CAS  Google Scholar 

  • Marinković, D, Tucić, N, Moya, A, and Ayala, F J. 1987. Genetic diversity and linkage disequilibrium in Drosophila melanogaster with different rates of development. Genetics, 117, 513–520.

    PubMed  PubMed Central  Google Scholar 

  • Middleton, R J, and Kacser, H. 1983. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics, 105, 633–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, S, Pearcy, R W, and Berger, E. 1975. Polymorphism at the α-glycerophosphate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult allozymes. Biochem Genet, 13, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, S, and Bennett, J. 1962. A simple food medium that requires no live yeast with the minimum of variables. Dros InfServ, 36, 131–132.

    Google Scholar 

  • Oakeshott, J G, Gibson, J B, Anderson, P R, Knibb, W R, Anderson, D G, and Chambers, G K. 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution, 36, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Oakeshott, J G, Wilson, S R, and Parnell, P. 1985. Selective effects of temperature on some enzyme polymorphisms in laboratory populations of Drosophila melanogaster. Heredity, 55, 69–82.

    Article  Google Scholar 

  • O'Brien, S J, and Macintyre, R J. 1978. Genetics and biochemistry of enzymes and specific proteins of Drosophila.. In: Ashburner, M., Carson, H. L. and Thompson, J. N. (eds), The Genetics and Biology of Drosophila, Vol. 2a, Academic Press, London, pp. 396–551.

    Google Scholar 

  • Palabost-Charles, L. 1980. Maintenance mechanism of polymorphism at the α-Gpdh locus in Drosophila melanogaster. Biochem Genet, 18, 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, P A. 1983. The Evolutionary Biology of Colonizing Species, Cambridge University Press, New York.

    Book  Google Scholar 

  • Partridge, L. 1988. Lifetime reproductive success in Drosophila.. In: Clutton-Brock, T. H. (ed.), Reproductive Success, University of Chicago Press, Chicago, pp. 11–23.

    Google Scholar 

  • Rechsteiner, M C. 1970. Drosophila lactate dehydrogenase and α-glycerolphosphate dehydrogenase: distribution and change in activity during development. J Insect Physiol, 16, 1179–1192.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, F W. 1963. The ecological genetics of growth in Drosophila. 6. The genetic correlation between duration of the larval period and body size in relation to larval diet. Genet Res, Camb, 4, 74–92.

    Article  Google Scholar 

  • Van Delden, W. 1982. The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Selection at an enzyme locus. Evol Biol, 15, 187–222.

    Article  CAS  Google Scholar 

  • Van Delden, W. 1984. The alchol dehydrogenase polymorphism in Drosophila melanogaster, facts and problems. In: Wöhrmann, K. and Loeschke, V. (eds), Population Biology and Evolution, Springer-Verlag, Berlin, pp. 127–142.

    Chapter  Google Scholar 

  • Van Delden, W, and Kamping, A. 1979. The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster. 3. Differences in developmental times. Genet Res, Camb, 33, 15–27.

    Article  CAS  Google Scholar 

  • Van Delden, W, and Kamping, A. 1989. The association between the polymorphisms at the Adh and αGpdh loci in the In(2L)t inversion in Drosophila melanogaster in relation to temperature. Evolution, 43, 775–793.

    Article  PubMed  Google Scholar 

  • Vigue, C L, Weisgram, P A, and Rosenthal, E. 1982. Selection at the alcohol dehydrogenase locus of Drosophila melanogaster. effects of ethanol and temperature. Biochem Genet, 20, 681–688.

    Article  CAS  PubMed  Google Scholar 

  • Zera, A J, Koehn, R K, and Hall, J G. 1984. Allozymes and biological adaptation. In: Kerkut, G. A. and Gilbert, L. I. (eds), Comprehensive Insect Physiology, Vol. 10, Pergamon Press, New York, pp. 633–674.

    Google Scholar 

  • Zwaan, B J, Bijlsma, R, and Hoekstra, R F. 1991. On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions. Heredity, 60, 29–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands

    L Oudman, W van Delden, A Kamping & R Bijlsma

Authors
  1. L Oudman
    View author publications

    Search author on:PubMed Google Scholar

  2. W van Delden
    View author publications

    Search author on:PubMed Google Scholar

  3. A Kamping
    View author publications

    Search author on:PubMed Google Scholar

  4. R Bijlsma
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oudman, L., van Delden, W., Kamping, A. et al. Polymorphism at the Adh and αGpdh loci in Drosophila melanogaster: effects of rearing temperature on developmental rate, body weight, and some biochemical parameters. Heredity 67, 103–115 (1991). https://doi.org/10.1038/hdy.1991.69

Download citation

  • Received: 22 October 1990

  • Issue date: 01 August 1991

  • DOI: https://doi.org/10.1038/hdy.1991.69

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Adh
  • αGpdh
  • developmental time
  • Drosophila melanogaster
  • temperature
  • weight

This article is cited by

  • Consequences of fragmentation for the ability to adapt to novel environments in experimental Drosophila metapopulations

    • J. Bakker
    • M. E. C. van Rijswijk
    • R. Bijlsma

    Conservation Genetics (2010)

  • The effect of population density on the elimination dynamics of a recessive lethal mutation l(2)M167 DTS from experimental populations of Drosophila melanogaster

    • A. M. Kulikov
    • F. Marec
    • V. G. Mitrofanov

    Russian Journal of Genetics (2005)

  • Heritabilities and additive genetic variances of the activities of some enzymes in Drosophila melanogaster populations living in different habitats

    • K Pecsenye
    • I Komlósi
    • A Saura

    Heredity (2004)

  • Latitudinal clines inDrosophila melanogaster: Body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway

    • Gerdien de Jong
    • Zoltán Bochdanovits

    Journal of Genetics (2003)

  • Variation of allozyme loci in populations of Drosophila melanogaster from the former USSR

    • Oleg A Bubli
    • Tatyana A Rakitskaya
    • Alexandra G Imasheva

    Heredity (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited