Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae)
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1991

Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae)

  • Andrew Schnabel1,
  • Roger H Laushman2 &
  • J L Hamrick3 

Heredity volume 67, pages 357–364 (1991)Cite this article

  • 1196 Accesses

  • 65 Citations

  • Metrics details

Abstract

Maclura pomifera, an autotetraploid, and Gleditsia triacanthos, a diploid, are ecologically similar dioecious tree species that often co-occur in early succession habitats throughout the mid-western United States. We studied levels of genetic diversity and patterns of genetic structure for four polymorphic enzyme loci of M. pomifera and 16 polymorphic enzyme loci of G. triacanthos from a single population in eastern Kansas. Levels of expected heterozygosity were high for both species, averaging 0.725 for M. pomifera and 0,366 for G. triacanthos. Although genotypes for nearly all G. triacanthos loci were in Hardy-Weinberg frequencies, three of four M. pomifera loci deviated from equilibrium expectations. Two aspects of genetic structure were explored. First, the extent of clonal growth was estimated by comparing genotypes of stems within 50 G. triacanthos and 32 M. pomifera clumps. The great majority of clumps contained more than one genotype, and in many clumps, all stems were genetically unique. Secondly, as revealed by spatial autocorrelation analyses, genetic substructure was very local for both species, with significant positive autocorrelation occurring only within clumps of individuals or among near neighbours. We argue that this pattern of spatial structure for both species results from extremely local seed dispersal and establishment of individuals from the same multiseeded fruit.

Similar content being viewed by others

Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum

Article Open access 08 November 2021

Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach

Article Open access 14 October 2021

Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia

Article 12 September 2023

Article PDF

References

  • Bayer, R J. 1989. Patterns of isozyme variation in western North American Antenneria (Asteraceae: Inuleae) II. Diploid and polyploid species of section Alpinae. Am J Bot, 76, 679–691.

    Article  Google Scholar 

  • Bugbee, R E, and Riegel, A. 1945. Seasonal food choices of the fox squirrel in western Kansas. Kans Acad Sci Trans, 48, 199–203.

    Article  Google Scholar 

  • Dewey, S E, and Heywood, J S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution, 42, 834–838.

    Article  PubMed  Google Scholar 

  • Dice, L R. 1945. Some winter foods of the cottontail in southern Michigan. J Mammal, 26, 87–88.

    Article  Google Scholar 

  • Epperson, B K. 1990a. Spatial patterns of genetic variation within plant populations. In; Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding, and Genetic Resources, Sinauer, Sunderland, Massachusetts, pp. 229–253.

    Google Scholar 

  • Epperson, B K. 1990b. Spatial autocorrelation of genotypes under directional selection. Genetics, 124, 757–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epperson, B K, and Clegg, M T. 1986. Spatial-autocorrelation analysis of flower color polymorphisms within sub-structured populations of morning glory (Ipomoea purpurea. Am Nat, 128, 840–858.

    Article  Google Scholar 

  • Fowells, H A. 1965. Silvics of Forest Trees of the United States. Agriculture Handbook No. 271. US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Friedman, S T, and Adams, W T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). TheorAppl Genet, 69, 609–615.

    Article  CAS  Google Scholar 

  • Gabriel, K R, and Sokal, R R. 1969. A new statistical approach to geographic variation analysis. Syst Zool, 18, 259–278.

    Article  Google Scholar 

  • Gordon, D. 1966. A revision of the genus Gleditsia (Leguminosae). Ph.D Thesis, Indiana University, Champagne-Urbana.

    Google Scholar 

  • Haldane, J B S. 1930. Theoretical genetics of autopolyploids. J Genet, 22, 359–372.

    Article  Google Scholar 

  • Hamrick, J L, and Godt, M J W. 1990. Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding, and Genetic Resources, Sinauer, Sunderland, Massachusetts, pp. 44–64.

    Google Scholar 

  • Hamrick, J L, and Holden, L R. 1979. Influence of micro-habitat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evolution, 33, 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, J L, Linhart, Y B, and Mitton, J B. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecol Syst, 10, 173–200.

    Article  Google Scholar 

  • Harju, A, and Muona, O. 1989. Background pollination in Pinus sylvestris seed orchards. Scand J For Res, 4, 513–520.

    Article  Google Scholar 

  • Jain, S K, and Bradshaw, A D. 1966. Evolutionary divergence among adjacent plant populations. I. Evidence and its theoretical analysis. Heredity, 21, 407–441.

    Article  Google Scholar 

  • Laushman, R H, Schnabel, A, and Hamrick, J L. 1990. Electrophoretic Evidence for tetrasomic inheritance in the dioecious tree Maclura pomifera (Raf.) Schneid. Am J Bot, 77, 75 (abstract).

    Google Scholar 

  • Levin, D A. 1983. Polyploidy and novelty in flowering plants. Am Nat, 122, 1–25.

    Article  Google Scholar 

  • Li, C C. 1976. First Course in Population Genetics. Boxwood Press, Pacific Grove, California.

    Google Scholar 

  • Li, C C, and Horvitz, D G. 1953. Some methods of estimating the inbreeding coefficient. Am J Hum Genet, 5, 107–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loveless, M D, and Hamrick, J L. 1984. Ecological determinants of genetic structure in plant populations. Ann Rev, Ecol Syst, 15, 65–95.

    Article  Google Scholar 

  • Mathwig, J E. 1971. Relationships betwween bruchid beetles (Amblycerus robinae) and honey locust trees (Gleditsia triacanthos). Ph.D Thesis, University of Kansas, Lawrence.

    Google Scholar 

  • Milton, J B, Linhart, Y B, Hamrick, J L, and Beckman, J S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range. Theor Appl Genet, 51, 5–13.

    Article  Google Scholar 

  • Nagasaka, K, and Szmidt, A E. 1985. Multilocus analysis of external pollen contamination of a Scots pine (Pinus sylvestris L.) seed orchard. In: Gregorius, H.-R. (ed.), Population Genetics in Forestry, Springer-Verlag, Berlin, pp. 134–138.

    Chapter  Google Scholar 

  • Ness, B D, Soltis, D E, and Soltis, P S. 1989. Autopolyploidy in Heuchera micrantha (Saxifragaceae). Am J Bot, 76, 614–626.

    Article  Google Scholar 

  • Oden, N L. 1984. Assessing the significance of a spatial correlogram. Geographical Analysis, 16, 1–16.

    Article  Google Scholar 

  • Peattie, D C. 1953. A Natural History of Western Trees. Houghton Mifflin, Boston, Massachusetts.

    Google Scholar 

  • Rohlf, F J, and Schnell, G D. 1971. An investigation of the isolation by distance model. Am Nat, 105, 295–324.

    Article  Google Scholar 

  • Schnabel, A. 1988. Genetic structure and gene flow in Gleditsia triacanthos L. Ph.D Thesis, University of Kansas, Lawrence.

  • Schnabel, A, and Hamrick, J L. 1990. Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). Am J Bot, 11, 1060–1069.

    Article  Google Scholar 

  • Schoen, D J, and Latta, R G. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity, 63, 181–189.

    Article  Google Scholar 

  • Smith, J L, and Perino, J V. 1981. Osage orange (Madura pomifera): History and economic uses. Econ Bot, 35, 24–41.

    Article  Google Scholar 

  • Sokal, R R, and Oden, N L. 1978. Spatial autocorrelation in biology 1. Methodology. Biol J Linn Soc, 10, 199–228.

    Article  Google Scholar 

  • Sokal, R R, Jacquez, G M, and Wooten, M C. 1989. Spatial autocorrelation analysis of migration and selection. Genetics, 121, 845–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis, D E, and Soltis, P S. 1989. Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae). Evolution, 43, 586–594.

    Article  PubMed  Google Scholar 

  • Soltis, D E, Haufler, C H, Darrow, D C, and Gastony, G J. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J, 73, 9–27.

    Article  Google Scholar 

  • Stebbins, G L. 1980. Polyploidy in plants: unresolved problems and prospects. In: Lewis, W. H. (ed.), Polyploidy, Plenum, New York, pp. 495–520.

    Chapter  Google Scholar 

  • Turkington, R, and Harper, J L. 1979. The growth, distribution, and neighbour relationships of Trifolium repens in a permanent pasture. IV. Fine scale biotic differentiation. J Ecol, 67, 245–254.

    Article  Google Scholar 

  • Turner, M E, Stephens, J C, and Anderson, W W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc Natl Acad Sci USA, 79, 203–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, P G, Soltis, D E, and Soltis, P S. 1990. Chloroplast-DNA and allozymic variation in diploid and autotetraploid Heuchera grossulariifolia (Saxifragaceae). Am J Bot, 77, 232–244.

    Article  PubMed  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zar, J H. 1974. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

Download references

Acknowledgements

Acknowledgements This work was funded by NSF Doctoral Dissertation Improvement grant BSR-851447 to JLH for AS, a University of Kansas General Research grant to JLH, and a grant from Sigma Xi, The Scientific Research Society to RHL. John Heywood kindly supplied the computer program for autocorrelation analyses. We also thank an anonymous reviewer, who made several thoughtful suggestions for improving the manuscript.

Author information

Authors and Affiliations

  1. Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA

    Andrew Schnabel

  2. Department of Biology, Oberlin College, Oberlin, 44074, Ohio, USA

    Roger H Laushman

  3. Departments of Botany and Genetics, University of Georgia, Athens, 30602, Georgia, USA

    J L Hamrick

Authors
  1. Andrew Schnabel
    View author publications

    Search author on:PubMed Google Scholar

  2. Roger H Laushman
    View author publications

    Search author on:PubMed Google Scholar

  3. J L Hamrick
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnabel, A., Laushman, R. & Hamrick, J. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67, 357–364 (1991). https://doi.org/10.1038/hdy.1991.99

Download citation

  • Received: 30 January 1991

  • Issue date: 01 December 1991

  • DOI: https://doi.org/10.1038/hdy.1991.99

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • autotetraploidy
  • genetic structure
  • Gleditsia tricanthos
  • Maclura pomifera
  • spatial autocorrelation

This article is cited by

  • Stand development stages and recruitment patterns influence fine-scale spatial genetic structure in two Patagonian Nothofagus species

    • Georgina Sola
    • Paula Marchelli
    • Verónica El Mujtar

    Annals of Forest Science (2022)

  • Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum

    • Meher Ony
    • William E. Klingeman
    • Denita Hadziabdic

    Scientific Reports (2021)

  • Fine-scale spatial genetic structure of sycamore maple (Acer pseudoplatanus L.)

    • Madhav Pandey
    • Oliver Gailing
    • Reiner Finkeldey

    European Journal of Forest Research (2012)

  • Spatial genetic structure of two sympatric neotropical palms with contrasting life histories

    • R Luna
    • B K Epperson
    • K Oyama

    Heredity (2005)

  • Allozyme variation and structure of the Canarian endemic palm tree Phoenix canariensis (Arecaceae): implications for conservation

    • M A González-Pérez
    • J Caujapé-Castells
    • P A Sosa

    Heredity (2004)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited