Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1992

Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus

  • John H Willis1 nAff2 

Heredity volume 69, pages 562–572 (1992)Cite this article

  • 1072 Accesses

  • 54 Citations

  • Metrics details

Abstract

Two Oregon populations of the partially self-fertilizing Mimulus guttatus, located on Iron Mountain and Cone Peak, were surveyed for the frequency of recessive chlorophyll-deficient lethals by selfing plants collected as seed from the wild. Allelism tests were used to determine the number of different loci with lethal alleles present in the carriers isolated in the population surveys. The frequency of carriers was 0.065 for the Iron Mountain population (23/356) and 0.024 for the Cone Peak population (8/327). Allelism tests of the 31 carriers isolated from both populations revealed the existence of 26 different independently acting loci and two different duplicate locus systems with lethal alleles. These results indicate that the component of inbreeding depression caused by chlorophyll-deficient lethals is not due to single locus heterozygote advantage and is probably caused by mutation-selection balance at many loci. Estimates of the genomic and per locus mutation rates for this class of lethals are in close agreement with those obtained in studies of chlorophyll-deficient lethals in several agricultural plant species. Genetic analysis of a California population of M. guttatus, reported in the literature to exhibit an unusually high per locus mutation rate and segregation distortion for a chlorophyll-deficient lethal, revealed that chlorophyll-deficiency is inherited as a duplicate gene system. This mode of inheritance, not recognized previously, can explain the appearance of unusually high mutation rates and segregation distortion.

Similar content being viewed by others

Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)

Article Open access 29 November 2024

Inversions contribute disproportionately to parallel genomic divergence in dune sunflowers

Article Open access 04 December 2024

Genomic and genetic insights into Mendel’s pea genes

Article Open access 23 April 2025

Article PDF

References

  • Allendorf, F W. 1976. Amount of polymorphism expected at duplicate loci. Genetics, 83, s1.

  • Apirion, D, and Zohary, D. 1961. Chlorophyll lethals in natural populations of the orchard grass (Dactylis glomerata L.). A case of balanced polymorphism in plants. Genetics, 46, 393–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan, F, and Soltis, D E. 1987. Electrophoretic evidence for allopolyploidy in the fern Polypodium virginianum. Syst Bot, 12, 553–561.

    Article  Google Scholar 

  • Charlesworth, D, and Charlesworth, B. 1979. The evolutionary genetics of sexual systems in flowering plants. Proc Roy Soc Lond B, 205, 513–530.

    Article  CAS  Google Scholar 

  • Charlesworth, D, and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst, 18, 237–268.

    Article  Google Scholar 

  • Charlesworth, D, Morgan, M T, and Charlesworth, B. 1990. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution, 44, 1469–1489.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen, F B, and Frydenberg, O. 1977. Selection-mutation balance for two nonallelic recessives producing an inferior double homozygote. Am J Hum Genet, 29, 195–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen, R E, and Cameron, D R. 1950. Inheritance in Nicotiana tabacum: XXIII. Duplicate factors for chlorophyll production. Genetics, 35, 4–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow, J F. 1964. More on the heterozygous effects of lethals in Drosophila populations. Am Nat, 98, 447–449.

    Article  Google Scholar 

  • Crow, J F, and Temin, R G. 1964. Evidence for the partial dominance of recessive lethal genes in natural populations of Drosophila. Am Nat, 98, 21–33.

    Article  Google Scholar 

  • Crow, J F, and Simmons, M J. 1983. The mutation load in Drosophila. In: Ashburner, M, Carson, H. L. and Thompson, J. N. (eds), The Genetics and Biology of Drosophila. Academic Press, London, pp. 1–35.

    Google Scholar 

  • Crumpacker, D W. 1967. Genetic load in maize (Zea mays L.) and other cross-fertilized plants and animals. Evol Biol, 1, 306–423.

    Google Scholar 

  • Curran, P L. 1963. Balanced polymorphisms in Dactylis glomerata sub-species woronowii. Nature, 197, 105–106.

    Article  Google Scholar 

  • Demerec, M. 1923. Inheritance of white seedlings in maize. Genetics, 8, 561–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T, and Spassky, B. 1968. Genetics of natural populations. XL. Heterotic and deleterious effects of lethals in populations of Drosophila pseudoobscura. Genetics, 59, 411–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T, and Wright, S. 1941. Genetics of natural populations. V. Relations between mutation rate and accumulation of lethals in populations of Drosophila pseudoobscura. Genetics, 26, 23–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer, D S. 1981. Introduction to Quantitative Genetics. 2nd edn. Longman, London.

    Google Scholar 

  • Ferris, S D, and Whitt, G S. 1977. Loss of duplicate gene expression after polyploidization. Nature, 265, 258–260.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R A. 1935. The sheltering of lethals. Am Nat, 69, 446–455.

    Article  Google Scholar 

  • Ganders, F R. 1972. Heterozygosity for recessive lethals in homosporous fern populations: Thelypteris palustris and Onoclea sensibilis. Bot J Linn Soc, 65, 211–221.

    Article  Google Scholar 

  • Gastony, G J. 1991. Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. Proc Natl Acad Sci USA, 88, 1602–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg, R, and Crow, J F. 1960. A comparison of the effect of lethal and detrimental chromosomes from Drosophila populations. Genetics, 45, 1153–1168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson, A. 1947. The advantageous effect of deleterious mutations. Hereditas, 33, 573–575.

    Google Scholar 

  • Haldane, J B S. 1933. The part played by recurrent mutation in evolution. Am Nat, 42, 5–19.

    Article  Google Scholar 

  • Hayes, H K, and Brewbaker, H E. 1924. Frequency of mutations for chlorophyll-deficient seedlings in maize. J Hered, 15, 497–502.

    Article  Google Scholar 

  • Hedrick, P W. 1987. Genetic load and the mating system in homosporous ferns. Evolution, 41, 1282–1289.

    Article  PubMed  Google Scholar 

  • Houle, D. 1989. Allozyme-associated heterosis in Drosophila melanogaster. Genetics, 123, 789–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jinks, J L. 1983. Biometrical genetics of heterosis. In: Frankel, R. (ed.), Heterosis: Reappraisal of Theory and Practice. Springer-Verlag, Berlin, pp. 1–46.

    Google Scholar 

  • Jørgensen, J H, and Jensen, H P. 1986. The spontaneous chorophyll mutation frequency in Barley. Hereditas, 105, 71–72.

    Article  Google Scholar 

  • Kiang, Y T. 1970. A natural population of Mimulus guttatus maintaining a high frequency of an albino lethal gene. PhD Dissertation, University of California, Berkeley.

    Google Scholar 

  • Kiang, Y T. 1972. Pollination study in a natural population of Mimulus guttatus. Evolution, 26, 308–310.

    Article  CAS  PubMed  Google Scholar 

  • Kiang, Y T, and Libby, W J. 1972. Maintenance of a lethal in a natural population of Mimulus guttatus. Am Nat, 106, 351–367.

    Article  Google Scholar 

  • Klekowski, E J. 1970. Populational and genetic studies of a homosporous fern, Osmunda regalis. Am J Bot, 57, 1122–1138.

    Article  Google Scholar 

  • Klekowski, E J. 1976. Genetics of recessive lethality in the fern, Osmunda regalis. J Hered, 67, 146–148.

    Article  Google Scholar 

  • Klekowski, E J. 1984. Mutational load in clonal plants: a study of two fern species. Evolution, 38, 417–426.

    Article  PubMed  Google Scholar 

  • Klekowski, E J. 1988. Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.

    Google Scholar 

  • Lande, R, and Schemske, D W. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution, 39, 24–40.

    Article  PubMed  Google Scholar 

  • Li, W-H. 1980. Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes. Genetics, 95, 237–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd, D G. 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat, 113, 67–79.

    Article  Google Scholar 

  • Lynch, M, and Gabriel, W. 1990. Mutation load and survival of small population. Evolution, 44, 1725–1737.

    Article  PubMed  Google Scholar 

  • Maruyama, T, and Takahata, N. 1981. Numerical studies of the frequency trajectories in the process of fixation of null genes at duplicated loci. Heredity, 46, 49–57.

    Article  Google Scholar 

  • Mather, K, and Jinks, J L. 1982. Biometrical Genetics. Chapman and Hall, London.

    Book  Google Scholar 

  • Mukai, T, and Burdick, A B. 1959. Single gene heterosis associated with a second chromosome recessive lethal in Drosophila melanogaster. Genetics, 44, 211–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1968. The frequency distribution of lethal chromosomes in finite populations. Proc Natl Acad Sci, USA, 60, 517–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1969. Gene duplication and nucleotide substitution in evolution. Nature, 221, 40–41.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M, and Roychoudhury, A K. 1973. Probability of fixation of nonfunctional genes at duplicate loci. Am Nat, 107, 362–373.

    Article  Google Scholar 

  • Ohnishi, O. 1982. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Japanese. J Genet, 57, 623–639.

    Google Scholar 

  • Ohno, S. 1972. So much ‘junk’ DNA in our genome, In: Smith, H. H. (ed.), Brookhaven Symposia in Biology No 23. Gordon and Breach, New York, pp. 366–370.

    Google Scholar 

  • Ohta, T, and Cockerham, C C. 1974. Detrimental genes with partial selfing and effects on a neutral locus. Genet Res, Camb. 23, 191–200.

    Article  Google Scholar 

  • Prout, T. 1952. Selection against heterozygotes for autosomal lethals in natural populations of Drosophila willistoni. Proc Natl Acad Sci, USA, 38, 478–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riman, L. 1963. A synoptic survey of maize genes. Maydica, 8, 99–123.

    Google Scholar 

  • Robertson, A, and Narain, P. 1971. The survival of recessive lethals infinite populations. Theor Pop Biol, 2, 24–50.

    Article  CAS  Google Scholar 

  • Schnick, S M, Mukai, T, and Burdick, A B. 1960. Heterozygote viability of a second chromosome recessive lethal in Drosophila melanogaster. Genetics, 45, 315–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler, J F. 1954. Natural mutations in inbred lines of maize and their heterotic effect. I. Comparison of parent, mutant and their F1 hybrid in a highly inbred background. Genetics, 39, 908–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, M J, and Crow, J F. 1977. Mutations affecting fitness in Drosophila populations. Ann Rev Genet, 11, 49–78.

    Article  CAS  PubMed  Google Scholar 

  • Soulé, M. 1986. Conservation Biology. Sinauer Association, Sunderland, MA.

    Google Scholar 

  • Sprague, G F. 1983. Heterosis in maize: theory and practice. In:Frankel, R. (ed.), Heterosis: Reappraisal of Theory and Practice. Springer-Verlag, Berlin.

    Google Scholar 

  • Werth, C R, Guttman, S I, and Eshbaugh, W H. 1985. Recurring origins of allopolyploid species in Asplenium. Science, 228, 731–733.

    Article  CAS  PubMed  Google Scholar 

  • Werth, C R, and Windham, M D. 1991. A model of divergent, allopatric speciation of polyploid Pteridophytes resulting from silencing of duplicate-gene expression. Am Nat, 137, 515–526.

    Article  Google Scholar 

  • Wettstein, D V, Henningsen, K W, Boynton, J E, Kannagara, G C, and Nielsen, O F. 1971. The genie control of chloroplast development in barley. In:Boardman, N. K. and Smillie, R. M. (eds), Autonomy and Biogenesis of Mitochondria and Chloroplasts. North Holland Press, The Hague, Netherlands, pp. 205–223.

    Google Scholar 

  • Williams, W, and Brown, A G. 1956. Genetic response to selection in cultivated plants: gene frequencies in Prunus avium. Heredity, 10, 237–245.

    Article  Google Scholar 

  • Willis, J H. 1991. The role of inbreeding depression in the evolution of two partially self-fertilizing populations of Mimulus guttatus. PhD Dissertation, University of Chicago.

    Google Scholar 

  • Wright, S. 1937. The distribution of genes in populations. Proc Natl Acad Sci, USA 23, 307–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations, Vol 2 The Theory of Gene Frequencies. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S. 1977. Evolution and the Genetics of Populations, Vol 3 Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S, Dobzhansky, T, and Hovanitz, W. 1942. Genetics of natural populations. VII. The allelism of lethals in the third chromosome of Drosophila pseudoobscura. Genetics, 27, 363–394.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Author notes
  1. John H Willis

    Present address: Department of Biology, University of Oregon, Eugene, OR, 97403, U.S.A.

Authors and Affiliations

  1. Department of Ecology and Evolution, The University of Chicago, Chicago, 60637, IL, USA

    John H Willis

Authors
  1. John H Willis
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis, J. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus. Heredity 69, 562–572 (1992). https://doi.org/10.1038/hdy.1992.172

Download citation

  • Received: 18 March 1992

  • Issue date: 01 December 1992

  • DOI: https://doi.org/10.1038/hdy.1992.172

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chlorophyll-deficient mutations
  • genetic load
  • inbreeding depression
  • Mimulus
  • over-dominance
  • recessive lethals

This article is cited by

  • The genetics of inbreeding depression

    • Deborah Charlesworth
    • John H. Willis

    Nature Reviews Genetics (2009)

  • Mating systems of diploid and allotetraploid populations of Tragopogon (Asteraceae). I. Natural populations

    • Linda M Cook
    • Pamela S Soltis

    Heredity (1999)

  • The contribution of male-sterility mutations to inbreeding depression in Mimulus guttatus

    • John H Willis

    Heredity (1999)

  • The cost of selfing inEncyclia cochleata (Orchidaceae)

    • Elena Ortiz-Barney
    • James D. Ackerman

    Plant Systematics and Evolution (1999)

  • Extinction of populations due to inbreeding depression with demographic disturbances

    • Yoshinari Tanaka

    Population Ecology (1997)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited