Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The prospects for polymorphisms shared between species
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1992

The prospects for polymorphisms shared between species

  • B Golding1 

Heredity volume 68, pages 263–276 (1992)Cite this article

  • 951 Accesses

  • 22 Citations

  • Metrics details

Abstract

Recent molecular evidence has shown that many MHC polymorphisms are not only shared between species but are in fact identical at the molecular level. Species that share these polymorphisms may be very distantly related and often diverged millions of generations ago. It is now known that this phenomenon is very unlikely to occur if the alleles are selectively neutral. A large number of other studies suggest, however, that this phenomenon of shared polymorphisms is very common and extends to many other loci beyond just the MHC/HLA complexes. These studies also suggest that some polymorphisms may be older than the MHC/HLA polymorphisms. The maintenance of these polymorphisms via overdominant and frequency-dependent selection is discussed. Strong levels of selection are required for overdominance to maintain shared polymorphisms but most studies of effective population size produce long-term estimates that are very small and would not permit the level of overdominant selection required to maintain these polymorphisms. Frequency-dependent selection can maintain them for longer with less ‘apparent’ equilibrium selection and might permit smaller effective sizes. The variance of allele frequencies is suggested to be one way to distinguish between these two selection models.

Similar content being viewed by others

Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean

Article Open access 22 June 2024

Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot

Article Open access 29 April 2022

Human molecular evolutionary rate, time dependency and transient polymorphism effects viewed through ancient and modern mitochondrial DNA genomes

Article Open access 03 March 2021

Article PDF

References

  • Arden, B, and Klein, J. 1982. Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: evidence for transspecific evolution of alleles. Proc Natl Acad Sci USA, 79, 2342–2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arden, B, Wakeland, E K, and Klein, J. 1980. Structural comparisons of serologically indistinguishable H-2K encoded antigens from inbred and wild mice. J Immunol, 125, 2424–2438.

    CAS  PubMed  Google Scholar 

  • Avery, P J. 1978. Selection effects in a model of two intermigrating colonies of finite size. Theor Pop Biol, 13, 24–39.

    Article  CAS  Google Scholar 

  • Avise, J C, Ball, R M, and Arnold, J. 1988. Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol, 5, 331–344.

    CAS  PubMed  Google Scholar 

  • Balner, H, Vanleewven, A, Dersjant, H, and Vanrood, J. 1967. Chimpanzee iso-antisera in relation to human leukocyte antigens. In: Curtoni, E. S., Matting, P. L. and Tosi, R. M. (eds) Histocompatibility Testing, 257–265 Copenhagen Munksgaard.

    Google Scholar 

  • Barrowclough, G F, and Shields, G F. 1984. Karyotypic evolution and long-term effective population sizes of birds. The Auk, 101, 99–102.

    Google Scholar 

  • Begon, M. 1977. The effective size of a natural Drosophila subobscura population. Heredity, 38, 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza, L L, and Bodmer, W F. 1971. The Genetics of Human Populations. Freeman & Sons Publ. Co., San Francisco.

    Google Scholar 

  • Chakraborty, R, and Neel, J V. 1989. Description and validation of a method for simultaneous estimation of effective population size and mutation rate from human population data. Proc Natl Acad Sci, USA, 86, 9407–9411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarelli, B. 1963. Sensitivity to P.T.C. (phenyl-thiocarbamide) in primates. Folia Primatol, 1, 88–94.

    Article  Google Scholar 

  • Denniston, C, and Crow, J F. 1990. Alternative fitness models with the same allele frequency dynamics. Genetics, 125, 201–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, T, and Wright, S. 1943. Genetics of natural populations. X. Dispersion rates of Drosophila pseudoobscura. Genetics, 28, 304–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Easteal, S. 1985. The ecological genetics of introduced populations of the giant toad Bufo marinus. II. Effective population size. Genetics, 110, 107–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewens, W J. 1979. Mathematical Population Genetics. Springer-Verlag, New York.

    Google Scholar 

  • Figueroa, F, Gunther, E, and Klein, J. 1988. MHC polymorphism pre-dating speciation. Nature, 335, 265–267.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R A, Ford, E B, and Huxley, J. 1939. Taste-testing the Anthropoid Apes. Nature, 144, 750.

    Article  Google Scholar 

  • Gillespie, J H. 1984. The molecular clock may be an episodic clock. Proc Natl Acad Sci, USA, 81, 8009–8013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie, J H. 1986. Variability of evolutionary rates of DNA. Genetics, 113, 1077–1091.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, S J. 1988. Prolonged stability in local populations of Cerion agassizi (Pleistocene-Recent) on Great Bahama Bank. Paleobiology, 14, 1–18.

    Article  Google Scholar 

  • Gyllensten, U B, and Erlich, H A. 1989. Ancient roots for polymorphism at the HLA-DQα locus in primates. Proc Natl Acad Sci, USA, 86, 9986–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl, D L. 1988. A Primer of Population Genetics. Sinauer Assoc. Inc., Sunderland, MA.

    Google Scholar 

  • Hedrick, P W. 1983. Genetics of Populations. Science Books Int., Boston, MA.

    Google Scholar 

  • Jacquard, A. 1974. The Genetic Structure of Populations. Springer-Verlag, New York.

    Book  Google Scholar 

  • Kimura, M. 1955. Solution of a process of random genetic drift with a continuous model. Proc Natl Acad Sci, USA, 41, 144–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, New York.

    Book  Google Scholar 

  • Kitchin, F D, and Bearn, A G. 1965. The serum group specific component in non-human primates. Am J Hum Genet, 17, 42–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, J. 1980. Generation of diversity at MHC loci: implications for T cell receptor repertoires. Immunology, 80, 239–253.

    Google Scholar 

  • Lande, R. 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution, 33, 234–251.

    Article  PubMed  Google Scholar 

  • Lawlor, D A, Ward, F E, Ennis, P D, Jackson, A P, and Parham, P. 1988. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature, 335, 268–271.

    Article  CAS  PubMed  Google Scholar 

  • McConnell, T J, Talbot, W S, McIndoe, R A, and Wakeland, E K. 1988. The origin of MHC class II gene polymorphism within the genus Mus. Nature, 332, 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, W E, Jonker, M, Klein, D, Ivanyi, P, Van Seventer, G, and Klein, J. 1988. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO, 7, 2765–2774.

    Article  CAS  Google Scholar 

  • Moor-Jankowski, J, Wiener, A S, and Rogers, C M. 1964. Human blood group factors in non-human primates. Nature, 202, 663–665.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M, and Graur, D. 1984. Extent of protein polymorphism and the neutral mutation theory. Evol Biol, 17, 73–118.

    Article  Google Scholar 

  • Owen, D F. 1966. Polymorphism in pleistocene land snails. Science, 152, 71–72.

    Article  CAS  PubMed  Google Scholar 

  • Parham, P, Lawlor, D A, Lomen, C E, and Ennis, P D. 1989. Diversity and diversification of HLA-A,B,C alleles. J Immunol, 142, 3937–3950.

    CAS  PubMed  Google Scholar 

  • Pollak, E. 1983. A new method for estimating the effective population size from allele frequency changes. Genetics, 104, 531–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, A. 1962. Selection for heterozygotes in small populations. Genetics, 47, 1291–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagai, T, Sakaizumi, M, Miyashita, N, Bonhomme, F, Petras, M L, Nielsen, J T, Shiroishi, T, and Moriwaki, K. 1989. New evidence for trans-species evolution of the H-2 class I polymorphism. Immunogenetics, 30, 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Spiess, E B. 1977. Genes in Populations. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Takahata, N. 1990. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci, USA, 87, 2419–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata, N, and Nei, M. 1990. Allelic genealogy under over-dominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics, 124, 967–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener, A S, and Moor-Jankowski, J. 1963. Blood groups in anthropoid apes and baboons. Science, 142, 67–69.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J W. 1987. The genetic demography of the Gainj of Papua New Guinea. II. Determinants of effective population size. Am Nat, 129, 165–187.

    Article  Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations Vol II Chicago University Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biology, York University, North York, Ontario, M3J 1P3, Canada

    B Golding

Authors
  1. B Golding
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golding, B. The prospects for polymorphisms shared between species. Heredity 68, 263–276 (1992). https://doi.org/10.1038/hdy.1992.39

Download citation

  • Received: 15 April 1991

  • Issue date: 01 March 1992

  • DOI: https://doi.org/10.1038/hdy.1992.39

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • effective population size
  • molecular evolution
  • shared polymorphisms
  • trans-species evolution
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited