Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 1992

Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence

  • Richard J Abbott1,
  • Paul A Ashton1 &
  • David G Forbes1 

Heredity volume 68, pages 425–435 (1992)Cite this article

  • 1092 Accesses

  • 59 Citations

  • Metrics details

Abstract

A survey of allelic variation at the Aat-3 locus in Senecio squalidus and S. vulgaris revealed that the Aat-3c allele, which was present at high frequency in British populations of S. squalidus, was also common in British radiate groundsel (S. vulgaris var. hibernicus) but was rare among individuals of the non-radiate groundsel (S. vulgaris var. vulgaris) which co-occurred with var. hibernicus and was absent from British, Irish and mainland European populations monomorphic for var. vulgaris. This evidence is taken as confirmation of an introgressive origin of S. vulgaris var. hibernicus across a chromosome barrier following hybridization between S. vulgaris var. vulgaris (2n = 40) and radiate S. squalidus (2n = 20) and backcrossing to S. vulgaris var. vulgaris. Genetic analysis showed that the Aat-3 locus, which is duplicated in S. vulgaris is not linked to the ray floret locus controlling capitulum type. It is suggested that the close association between the Aat-3c allele and the radiate allele in populations of S. vulgaris polymorphic for capitulum type may be maintained by selection favouring a co-adapted complex of genes introgressed from S. squalidus, although alternative explanations are not ruled out. The introgression of the Aat-3c allele and associated genetic material from S. squalidus into S. vulgaris is likely to have enhanced the level of genetic variation present within S. vulgaris and may have been a factor that has favoured the spread of S. vulgaris var. hibernicus in Britain following its origin last century.

Similar content being viewed by others

Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily

Article Open access 09 December 2022

Uncovering natural allelic and structural variants of OsCENH3 gene by targeted resequencing and in silico mining in genus Oryza

Article Open access 16 January 2023

Experimental evolution of adaptive divergence under varying degrees of gene flow

Article 11 January 2021

Article PDF

References

  • Abbott, R J. 1986. Life history variation associated with the polymorphism for capitulum type and outcrossing rate in S. vulgaris. Heredity, 56, 381–392.

    Article  Google Scholar 

  • Abbott, R J, and Horrill, J C. 1991. Survivorship and fecundity of the radiate and non-radiate morphs of groundsel, Senecio vulgaris L., raised in pure stand and mixture. J Evol Biol, 4, 241–257.

    Article  Google Scholar 

  • Abbott, R J, and Irwin, J A. 1988. Pollinator movements and the polymorphism for outcrossing rate in Groundsel, Senecio vulgaris L. Heredity, 60, 295–298.

    Article  Google Scholar 

  • Alexander, J C M. 1979. The Mediterranean species of Senecio sections Senecio and Delphinifolius. Notes Roy Bot Gard Edin, 27, 387–428.

    Google Scholar 

  • Allard, R W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia, 24, 235–278.

    Article  Google Scholar 

  • Anderson, E. 1949. Introgressive Hybridization. John Wiley, New York.

    Book  Google Scholar 

  • Arnold, M L, Hamrick, J L, and Bennett, B D. 1990. Allozyme variation in Louisiana irises: a test for introgression and hybrid speciation. Heredity, 65, 297–306.

    Article  Google Scholar 

  • Ashton, P A. 1990. Multiple Origins of Senecio cambrensis Rosser, and Related Evolutionary Studies in British Senecio. Unpublished Ph.D. Thesis, University of St Andrews.

  • Bloom, W L. 1976. Multivariate analysis of the introgressive replacement of Clarkia nitens by Clarkia speciosa polyantha. Evolution, 30, 412–424.

    Article  Google Scholar 

  • Brettell, R I S, and Leslie, A C. 1978. Senecio squalidus L. × S. vulgaris L. in Cambridgeshire. Watsonia, 12, 155.

    Google Scholar 

  • Briggs, D, and Walters, S M. 1984. Plant Variation and Evolution. 2nd edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Charlesworth, D, and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst, 18, 237–268.

    Article  Google Scholar 

  • Crisp, P C. 1972. Cytotaxonomic studies in the section Annui of Senecio. Unpublished Ph.D. Thesis, University of London.

    Google Scholar 

  • Davis, J L. 1985. Introgression in Central American Phytolacca (Phytolaccaceae). Am J Bot, 72, 1944–1953.

    Article  Google Scholar 

  • Druce, G C. 1927. The Flora of Oxfordshire. 2nd edn, Clarendon Press, Oxford.

    Google Scholar 

  • Ellstrand, N C, Lee, J H, Keeley, J E, and Keeley, S C. 1987. Ecological isolation and introgression: biochemical confirmation of introgression in an Arctostaphylos (Ericaceae) population. Acta Oecol, 8, 299–308.

    Google Scholar 

  • Fisher, R A. 1941. Average excess and average effect of a gene substitution. Ann Eugen, 11, 53–63.

    Article  Google Scholar 

  • Gibbs, P E, Milne, C, and Vargas Carrillo, M. 1975. Correlation between the breeding system and recombination index in five species of Senecio. New Phytol, 75, 619–626.

    Article  Google Scholar 

  • Gottlieb, L D. 1973. Genetic control of glutamate oxaloace-tate transaminase isozymes in the diploid plant Stephanomeria exigua and its allopolyploid derivatives. Biochem Genet, 9, 97–107.

    Article  CAS  Google Scholar 

  • Grant, V. 1950. Genetic and taxonomic studies in Gilia. Aliso, 2, 239–316.

    Article  Google Scholar 

  • Grant, V. 1981. Plant Speciation. 2nd edn, Columbia University Press, New York.

    Google Scholar 

  • Hamrick, J L, and Godt, M J W. 1990. Allozyme diversity in plant species, pp.43–63. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer, MA, pp. 43–63.

    Google Scholar 

  • Harper, J L, and Wood, W A. 1957. Biological Flora of the British Isles. Senecio jacobaea L. J Ecol, 45, 617–637.

    Article  Google Scholar 

  • Hartl, D L. 1981. A Primer of Population Genetics. Sinauer, MA.

    Google Scholar 

  • Heiser, C B. 1949. Study in the evolution of the sunflower species Helianthus annuus and H. bolanderi. Univ Calif Publ Bot, 23, 157–196.

    Google Scholar 

  • Heiser, C B. 1951. Hybridization in the annual sunflowers Helianthus annuus × H. debilis var. cucumerifolius. Evolution, 5, 42–51.

    Article  Google Scholar 

  • Heiser, C B. 1973. Introgression re-examined. Bot Rev, 39, 347–366.

    Article  Google Scholar 

  • Hull, P. 1974. Self-fertilisation and the distribution of the radiate form of Senecio vulgaris L. in Central Scotland. Watsonia, 10, 69–75.

    Google Scholar 

  • Ingram, R. 1977. Synthesis of the hybrid Senecio squalidus L. × S. vulgaris L. F. radiatus Hegi. Heredity, 39, 171–173.

    Article  Google Scholar 

  • Ingram, R. 1978. The genomic relationship of Senecio squalidus L. and S. vulgaris L. and the significance of genomic balance in their hybrid, S. × baxteri Druce. Heredity, 40, 459–462.

    Article  Google Scholar 

  • Ingram, R, and Taylor, L. 1982. The genetic control of a non-radiate condition in Senecio squalidus L. and some observations on the role of ray florets in the Compositae. New Phytol, 91, 749–756.

    Article  Google Scholar 

  • Ingram, R, Weir, J A, and Abbott, R J. 1980. New evidence concerning the origin of inland radiate groundsel Senecio vulgaris L. var. hibernicus Syme. New Phytol, 84, 543–546.

    Article  Google Scholar 

  • Levin, D A. 1963. Natural hybridization between Phlox maculata and P. glaberrima and its evolutionary significance. Am J Bot, 50, 714–719.

    Article  Google Scholar 

  • Levin, D A. 1975. Interspecific hybridization, heterozygosity and gene exchange in Phlox. Evolution, 29, 37–51.

    Article  Google Scholar 

  • Lloyd, D G. 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat, 113, 67–79.

    Article  Google Scholar 

  • Marshall, D F, and Abbott, R J. 1980. On the frequency of introgression of the radiate (Tr) allele from Senecio squalidus L. into Senecio vulgaris L. Heredity, 45, 133–135.

    Article  Google Scholar 

  • Marshall, D F, and Abbott, R J. 1982. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. I. Evidence. Heredity, 48, 227–235.

    Article  Google Scholar 

  • Marshall, D F, and Abbott, R J. 1984a. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. II. Confirmation. Heredity, 52, 331–336.

    Article  Google Scholar 

  • Marshall, D F, and Abbott, R J. 1984b. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. III. Causes. Heredity, 53, 145–149.

    Article  Google Scholar 

  • Maynard Smith, J. 1978. The ecology of sex. In: J. R. Krebs and N. B. Davies (eds) Behavioural Ecology An Evolutionary Approach. Blackwell Scientific Publications Ltd, Oxford, pp. 159–179.

    Google Scholar 

  • Monaghan, J, and Hull, P. 1976. Differences in vegetative characteristics among four populations of Senecio vulgaris L. possibly due to interspecific hybridization. Ann Bot, 40, 125–128.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA, 70, 3321–3323.

    Article  CAS  Google Scholar 

  • Olivieri, I. 1985. Comparative electrophoretic studies of Carduus pynochephalus L., C. tenuiflorus Curt. (Asteraceae) and their hybrids. Am J Bot, 72, 715–718.

    Article  Google Scholar 

  • Ornduff, R. 1964. Evoltionary pathways of the Senecio lautus alliance in New Zealand and Australia. Evolution, 18, 349–360.

    Article  Google Scholar 

  • Ornduff, R. 1967. Hybridization and regional variation in Pacific Northwestern Impatiens. (Balsaminaceae). Brittonia, 19, 122–128.

    Article  Google Scholar 

  • Rieseberg, L H, Beckstrom-Sternberg, S, and Doan, K. 1990. Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius. Proc Natl Acad Sci USA, 87, 593–597.

    Article  CAS  Google Scholar 

  • Rieseberg, L H, Soltis, D E, and Palmer, J D. 1988. A molecular re-examination of introgression between Helainthus annuus and H. bolanderi (Compositae). Evolution, 42, 227–238.

    Google Scholar 

  • Rollo, C D, MacFarlane, J D, and Smith, B S. 1985. Electrophoretic and allometric variation in burdock (Arctium spp): hybridization and its ecological implications. Can J Bot, 63, 1255–1261.

    Article  Google Scholar 

  • Stace, C A. 1977. The origin of radiate Senecio vulgaris L. Heredity, 39, 383–388.

    Article  Google Scholar 

  • Stace, C A. 1987. Hybridization and the Plant Species. In: Urbanska, K. M. (ed.) Differentiation Patterns in Higher Plants. Academic Press, London, pp. 115–127.

    Google Scholar 

  • Stebbins, G L. 1959. The role of hybridization in evolution. Proc Am Phil Soc, 103, 231–251.

    Google Scholar 

  • Stebbins, G L. 1969. The significance of hybridization for plant taxonomy and evolution. Taxon, 18, 26–35.

    Article  Google Scholar 

  • Soltis, D E, and Soltis, P S. 1986. Intergeneric hybridization between Conimitella williamsii and Mitella stauropetala (Saxifragaceae). Syst Bot, 11, 293–297.

    Article  Google Scholar 

  • Suiter, K A, Wendel, J F, and Case, J S. 1983. LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J Hered, 74, 203–204.

    Article  CAS  Google Scholar 

  • Syme, J T B. 1875. Senecio vulgaris L. var. hibernica mihi. Bolt Exch Club, Rep Curators, 1872–74, 27–28.

  • Taylor, L. 1984. The potential for introgression in a British polyploid complex. Unpublished Ph.D. Thesis, University of St. Andrews.

    Google Scholar 

  • Trow, A H. 1912. On the inheritance of certain characters in the Common Groundsel, Senecio vulgaris L., and its segregates. J Genet, 2, 239–276.

    Article  Google Scholar 

  • Weeden, N F, and Wendel, J F. 1989. Genetics of plant isozymes. In: Soltis, D. E. and Soltis, P. S. (eds) Isozymes in Plant Biology. Chapman and Hall, London, pp. 46–72.

    Chapter  Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biology and Preclinical Medicine, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, Scotland, KY16 9TH, UK

    Richard J Abbott, Paul A Ashton & David G Forbes

Authors
  1. Richard J Abbott
    View author publications

    Search author on:PubMed Google Scholar

  2. Paul A Ashton
    View author publications

    Search author on:PubMed Google Scholar

  3. David G Forbes
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, R., Ashton, P. & Forbes, D. Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence. Heredity 68, 425–435 (1992). https://doi.org/10.1038/hdy.1992.62

Download citation

  • Received: 20 May 1991

  • Issue date: 01 May 1992

  • DOI: https://doi.org/10.1038/hdy.1992.62

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • introgression
  • isozyme variation
  • population genetic structure
  • Senecio vulgaris
  • Senecio squalidus

This article is cited by

  • Introgressive replacement of natives by invading Arion pest slugs

    • Miriam A. Zemanova
    • Eva Knop
    • Gerald Heckel

    Scientific Reports (2017)

  • CYCLOIDEA 2 Clade Genes: Key Players in the Control of Floral Symmetry, Inflorescence Architecture, and Reproductive Organ Development

    • Marco Fambrini
    • Claudio Pugliesi

    Plant Molecular Biology Reporter (2017)

  • Multiple hybridization events, polyploidy and low postmating isolation entangle the evolution of neotropical species of Epidendrum (Orchidaceae)

    • Isabel Marques
    • David Draper
    • Carlos Naranjo

    BMC Evolutionary Biology (2014)

  • Recent hybrid origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae)

    • Richard J. Abbott
    • Adrian C. Brennan
    • Simon J. Hiscock

    Biological Invasions (2009)

  • Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida(Asteraceae)

    • Roosa AE Laitinen
    • Suvi Broholm
    • Paula Elomaa

    BMC Plant Biology (2006)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited