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Models for the evolution of selfing under
alternative modes of inheritance
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In an approach that explicitly incorporates genetic changes over consecutive generations of self-
fertilization, we contrast the effect of different modes of inheritance for selfing rate upon the
evolutionary equilibrium selfing rate. A monotonic decline of fitness with consecutive generations
of selfing was assumed. We found the range of conditions permitting evolutionarily stable mixed-
mating systems to increase with the number of genes controlling the selfing rate. When the mating
system is controlled by a single locus with alternative alleles for complete selfing or outcrossing,
alleles for selfing concentrate in inbred individuals and are exposed to stronger selection than the
average inbreeding depression. By contrast, when alleles of small effect control the selfing rate,
selfing rates do not vary as much between inbred vs. outcrossed individuals; this results in the
broader stability of mixed mating. We also find that, provided selfing is not caused by recessive
alleles, low levels of outcrossing can be maintained when the average relative fitness of selfed
progeny is above 0.5. This is postulated to be due to a long-term advantage for occasional
outcrossing in terms of the restoration of low inbreeding coefficients. The assumption of a mono-
tonic decline in fitness with consecutive generations of selfing is also discussed.
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Introduction

The evolutionary trajectory of a phenotypic trait can
be influenced by many components of its genetic
control. These genetic components include the herita-
bility, the number of genes controlling the trait and
their average effect, dominance, linkage, pleiotropy,
and epistatic interactions among these genes. However,
given sufficient mutational variation, the heritability,
the gene effects and the degree of dominance are not
expected to affect the evolutionary equilibrium of most
phenotypic traits. An exception may include traits
that influence the process of genetic transmission.
Changes in the rules of inheritance also change the
rules of the game, and hence may change the evolu-
tionarily favoured strategy.

The theory for the evolution of inbred plant mating
systems was first worked out by Fisher (1941). Since
selfing individuals pass on two copies of their genes to
their selfed offspring, genotypes which increase selfing
are favoured if selfed offspring are greater then half as
fit as outcrossed offspring; otherwise outcrossing is
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advantageous (Fisher, 1941; Lloyd, 1979). This results
in the prediction (Nagylaki, 1976; Wells, 1979) that
only complete selfing or complete outcrossing are
stable mating strategies. If genetic load is 'purged', this
result is reinforced since selfed offspring have high
relative fitness in selfing populations and low fitness in
outcrossed populations (Lande & Schemske, 1985;
Charlesworth & Charlesworth, 1987). However, the
documentation of many partially selfing species
(reviewed in Barrett & Eckert, 1990) has motivated
continued study of the factors which control the evolu-
tion of plant mating systems.

Maynard Smith (1977) suggested a possible explan-
ation for the existence of mixed mating systems (see
also Campbell, 1986; Damgaard etal., 1992). If the fit-
ness of selfed plants relative to outcrossed plants varies
according to the number of consecutive generations of
selfing, selfing may be advantageous for outcrossed
plants, but disadvantageous for inbred plants, resulting
in stable mixed mating. For this to occur, the relative
fitness of plants selfed one generation must be greater
than 0.5, while that of plants selfed many consecutive
generations must be less than 0.5. With inbreeding
depression caused by overdominance at several loci
(Campbell, 1986; Barrett & Charlesworth, 1991), or
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by recessive deleterious alleles with little purging of
inbreeding depression in selfing lines (Latta, 1992),
one expects this relative fitness of selfed plants to
decrease as a function of the number of selfed genera-
tions, at least for several generations.

In addition to these fitness changes, we note that the
selfing rate, if heritable, will differ between individuals
selfed for different numbers of generations. In general,
the selfing rate of plants selfed for i generations
increases with i. Furthermore, if genes for selfing are
recessive, the expression of these genes will depend on
the number of generations of selfing. This covariation
between selfing rate and inbreeding generates genetic
associations among loci (Uyenoyama & Waller,
1991a,b,c; Holsinger, 1991), and may explain
Holsinger's (1988) result that the fate of an allele
depends on the magnitude of its effects on selfing rate.

In this paper, we show how the equilibrium selfing
rate is influenced by the genetic control of selfing. The
genetic control of selfing is only one factor affecting
mating strategy, and we stress that we are only examin-
ing one aspect of the problem. Maynard Smith's
approach of tracking changes across consecutive gen-
erations of selfing, seems a useful approach for
studying this problem. In order to highlight the differ-
ence between types of genetic control of selfing, we
assume a fixed relationship between fitness and the
number of consecutive generations of selfing, and
neglect that this relationship itself evolves. However,
this approach seems a reasonable approximation of the
associations which develop between loci controlling
the mating system and those affecting fitness. We
examine Maynard Smith's (1977) model using iterative
deterministic recursions, where selfing is subject to
various modes of genetic control. We follow Maynard
Smith in considering any equilibrium selfing rate exclu-
sive of zero and one to be a mixed mating system. The
following modes of genetic control are examined and
compared: (i) single major additive gene; (ii) several
minor additive genes; (iii) quantitative inheritance; and
(iv) a single gene with dominance.

We find that selfed plants have a higher selfing rate
than outcrossed plants if selfing has high genetic
variance. Under these circumstances, lineages become
locked into repeating the same mating type so that the
conditions for stable mixed-mating are broadest when
selfing has low genetic variance. We also find that
dominant genes for selfing give a broader range of
conditions favouring mixed-mating, compared with
additive or recessive genes. Our models support
Holsinger's (1988) view that a population average of
the relative fitness of selfed individuals is not an
adequate predictor of mating system evolution.

Theoretical studies of the genetic characteristics of
inbreeding depression suggest that Maynard Smith's

(1977) fitness model, which assumes a monotonic
decline of fitness with continued inbreeding, is possible
only under biologically implausible circumstances
(Charlesworth & Charlesworth, 1990; Barrett &
Charlesworth, 1991). However, several empirical
studies suggest that some organisms do in fact experi-
ence a steady decrease in fitness over consecutive gen-
erations of inbreeding (e.g. Hollingsworth & Maynard
Smith, 1955; Hallauer & Sears, 1973; Schuster &
Michael, 1976; Monti & Frusciante, 1984) for at least
the first few generations of inbreeding. We therefore
discuss genetic models which may give a monotonic
decline of fitness with consecutive generations of self-
ing, and the implications of non-monotonic decline in
fitness on the predictions of this model.

The model

The basic unit of observation is the fraction of plants
selfed for 0, 1,...g generations, denoted by the vector
P1, (i = 1,g). In our calculations, we use g= 10. Plants in
these classes have inbreeding coefficients (F,) of 0, 1/2,
3/4,...[ 1 — (1/2)] and the relative fitness of these plants,
termed w, is assumed to be a function of their inbreed-
ing coefficient (outcrossed plants have fitness w0 = 1

regardless of the number of generations the parent had
been selfed prior to outcrossing). Let s( 1 —t) be the
selfing rate of plants selfed i generations. These s,
differ with i if selfing is heritable. For individuals selfed
i generations in a population of hermaphroditic plants,
a proportion s, will self-fertilize to produce individuals
selfed i + 1 generations. The frequency of outcrossers
(P0) is the sum of the frequency of outcrossing plants
over all generation classes (ti). We impose selection by
multiplying the progeny frequencies, F, by the fitness,
w, and normalizing by the mean fitness. Mathemati-
cally, these recursions are as follows where primes
denote proportions in the following generation:

D1 =P1sw1+1/W' 1+1

and

PJ=Piti/w, (1)
where W =P(sw + i1)(the mean fitness) and w0 = 1.

We assume two types of relationship of w with F
('fitness functions'). The first is

w=(1 —F,)&+(1 —6)
= 1— (2a)

where & is the inbreeding depression shown by a
plant selfed for very many consecutive generations
(F = 1). The function specifies a linear decrease of fit-
ness with increasing homozygosity, F, and depicts
additive fitness interactions between loci carrying
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recessive mutations with no purging within inbred
lines. The second fitness function is

w=(l—F)26,,,+(l—ój
=l—oF1(2—F).

Equation 2(b) declines monotonicaily and gives the
same fitness at F= 1 as eqn 2(a), but it is a concave
function, wherein the fitness loss each generation
becomes less severe with higher F. Concave fitness
functions arise from partial purging and/or multiplica-
tive fitness interactions among loci (Latta, 1992).
While the fitness effects of inbreeding have been shown
to depend upon the selling genotype (Uyenoyama &
Wailer, 1990a), we are here aproximating this by
assuming that these differences derive from the distri-
bution of alleles at selling rate loci among individuals

selfed for different numbers of generations. Some
empirically derived fitness functions are reviewed by
Damgaard eta!. (1992).

In the following, we will regard ó as the parameter

(2b) determining the rate of fitness loss over consecutive
generations of selfing. This parameter can be regarded
as either (i) one minus the relative fitness of a fully
homozygous individual, which with w0 = 1, is the
inbreeding depression experienced by a highly selfed
individual, or (ii) in the case of a linear fitness function,
as its downward slope.

Genetic control of selling is incorporated by calcula-
ting genOtype frequencies at loci controlling selfing in
plants selfed for i generations (i =0, 1 ,...g generations).
One can imagine each P, above being subdivided into a
vector of genotypic frequencies (such that a matrix of
genotypic frequencies is created cf Table 1). For con-

Table 1 Equilibrium distribution of selfing alleles among individuals selfed for i
consecutive generations in populations practicing mixed mating, with 6. =0.55.
(a) Balanced polymorphism at one locus with two alleles of major effect. (b) Distri-
bution of alleles of very small effect. F and W are the inbreeding coefficient
and fitness of each generation respectively. P. is the proportion of individuals selfed
i generations, AA, Aa and aa are the frequencies of homozygotes for outcrossing,
heterozygotes, and homozygotes for selfing alleles, respectively (such that
AA +Aa+ aa= Ps).The overall frequency of the selling allele in each class is q, and
s is the selfing rate among plants selfed i generations

i F W P AA Aa aa q s

(a)
0 0.000 1.000 0.284 0.057 0.168 0.057 0.500 0.499
1 0.500 0.725 0.204 0.030 0.060 0.113 0.704 0.703
2 0.750 0.587 0.149 0.007 0.015 0.126 0.895 0.894
3 0.875 0.518 0.113 0.001 0.003 0.108 0.971 0.970
4 0.937 0.484 0.082 0.000 0.000 0.081 0.993 0.992
5 0.968 0.467 0.056 0.000 0.000 0.056 0.999 0.998
6 0.984 0.458 0.038 0.000 0.000 0.038 1.000 0.999
7 0.992 0.454 0.025 0.000 0.000 0.025 1.000 0.999
8 0.996 0.452 0.013 0.000 0.000 0.013 1.000 0.999
9 0.998 0.451 0.007 0.000 0.000 0.007 1.000 0.999

10 0.999 0.450 0.006 0,000 0.000 0.006 1.000 1.000
Mean selfing rate =0.715.Average 6=0.424

(b)
0 0.000 1.000 0.354 0.067 0.174 0.113 0.434 0.645
1 0.500 0.725 0.300 0.094 0.074 0.131 0.439 0.645
2 0.750 0.587 0.184 0.070 0.022 0.091 0.444 0.645
3 0.875 0.518 0.092 0.038 0.005 0.047 0.451 0.645
4 0.937 0.484 0.040 0.017 0.003 0.008 0.458 0.645
5 0.968 0.467 0.016 0.007 0.000 0.008 0.465 0.645
6 0.984 0.458 0.006 0.003 0.000 0.003 0.473 0.645
7 0.992 0.454 0.002 0.001 0.000 0.001 0.480 0.646
8 0.996 0.452 0.001 0.000 0.000 0.000 0.488 0.646
9 0.998 0.451 0.001 0.000 0.000 0.000 0.511 0.646

10 0.999 0.450 0.000 0.000 0.000 0.000 0.523 0.646
Mean selfing rate =0.645. Average 6 = 0.372



4 R. LATTA & K. RITLAND

secutive generations of selfing, these genotypic fre-
quencies are calculated from the rules of Mendelian
segregation. For example, at a single locus, the frequency
of heterozygotes selfed i generations equals half the
frequency of heterozygotes selfed i — 1 generations times
the selling rate of heterozygotes. To calculate genotype
frequencies forming the newly outcrossed generation
we first find gene frequencies separately among the
outcrossed pollen and ovule pools. Ovule gene fre-
quencies are weighted by t.P1 for generation i. Geno-
type frequencies among outcrossed plants are then
calculated as the product of the pollen and ovule gene
frequencies. Ordinarily, one assumes that selfing plants
contribute fully to the outcrossing pollen pooi, but we
also considered the case of partial contribution (pollen
discounting), as discussed below.

Results of genetic models of selfing

Single major gene

We first modelled selling rate as controlled by a single
gene with two alleles, and no dominance or environ-
mental effects. The alternative homozygotes were com-
pletely selfing and completely outcrossing, and
heterozygotes had selling rate 0.5. The vector of gene
frequencies was initialized in Hardy—Weinberg propor-
tions with both allele frequencies equal to 0.5. Equili-
bria were found to be independent of the starting allele
frequencies. The equilibrium frequency distribution of
genotype was obtained by iterating (1) until genotypic
frequencies, and hence the selfing rate, stabilized. The
equilibrium selling rate was evaluated over a range of
possible values for 6.

With one locus controlling selling and a linear fit-
ness function, values of 6, between 0.4 and 0.85 result
in equilibrium mixed-mating (Fig. 1 a). However, with a
curved fitness function, this range is substantially
reduced to between 0.4 and 0.65 (Fig. ib).

At equilibrium, the distribution of individuals selfed
for i generations is skewed toward low i, even for quite
high selfing rates (Table la). Few indivdiuals have
resulted from more than a few consecutive generations
of selling. With selfing controlled by a single poly-
morphic locus, the frequency of selling alleles is
markedly different between outcrossed and fully selfed
individuals. Thus, the selfing rate rises sharply
towards one as the number of generations of selling
increases. Also, the level of inbreeding depression
averaged over all individuals (as normally measured
empirically) is less than 0.5 which would suggest that
the selfing alleles should increase in frequency.
Nonetheless, the situation depicted in Table 1(a) is in
equilibrium.

Several minor genes

We modelled several minor additive genes controlling
the selfing rate by assuming that genotypes showed a
binomial distribution of selling rates, with the extremes
of the distribution at complete selling and complete
outcrossing. Each selfing allele increased the selfing
rate by 0.5/n, where n is the number of loci. With more
loci controlling the selfing rate, the range of 6 allow-
ing mixed mating is increased: with four loci, values of
6, between 0.3 and 1.0 give mixed-mating (Fig. la and
b).

Alleles of small effect

We modelled small allelic effects by examining one
locus with two codominant alleles specifying very
similar selfing rates, s and s+0.01. If the selfing
allele was eliminated then the equilibrium selfing rate
was lower than s. Likewise, if the outcrossing allele was
eliminated, the equilibrium selling rate was higher than
s+0.01. We searched for pairs of alleles which could
both be maintained in the population for a given &.
This gave the equilibrium selfing rate which would be
expected in a population in which all plants produced
an equal proportion of selfed offspring, with no notice-
able polymorphisms for selfing rate.

Figure 1(a) and (b) show the equilibrium for the
small effects' model. Evolution of selfing by mutations
of small effect gives the greatest range of 6 for which
mixed mating is stable. Since the range of 6 for which
mixed mating is stable increases with the number of
loci, this analysis seems the best approximation for a
large number of loci of small effect. The range of stable
mixed-mating systems spans 0.25 <&. < 1.0 for linear
and 0.35 <6, <0.7 for curved fitness functions (Fig.
laandb).

The distribution of gene frequencies across consecu-
tive generations of selfing under the 'small effects'
model is given in Table 1(b). The difference in allele
frequencies at the selfing locus, and hence in selfing
rate, is much less between outcrossed and highly selfed
individuals than it is under single locus inheritance.
The distribution of individuals selfed for different
numbers of generations (P,) is more markedly skewed
toward low i than with genes of major effect. As a
result, the equilibrium selfing rate is different for the
same fitness
function.

A quantitative genetic model

A different approach is to model selfing as a trait show-
ing continuous inheritance. Assume a plant derived
from selfing i generations has selfing phenotype P,, and



0
0
.E 0.0
w0

Inbreeding depression of a fully inbred plant (8w)

GENETICS OF PARTIAL SELFING 5

Fig. 1 Equilibrium selling rates under different modes of inheritance: (a) single locus inheritance with a linear fitness function;
(b) single locus inheritance with a curved fitness function; (c) continuous inheritance with a linear fitness function; (d) single locus
with additive, dominant, and recessive alleles for selling, and a linear fitness function.

that this phenotype is the sum of independent genetic
and environmental contributions: P1 = + E1. These
quantities are random variables, each of which follow a
certain distribution; the environmental effect is
assumed to have zero mean, so that the mean pheno-
type equals the mean genotype, denoted as 'u,. Let c
be the genetic variance for selfing in generation i. At
equilibrium, the selfing rate in generation i + 1 is the
expected selfing genotype among selfing phenotypes in
generation i, divided by the expected amount of selfing
in generation i,

PH-I = E[G1P1]/E[P1]

=(p+ a)/p
=+(l —p1)v1,

where E[..] denotes expected value and

v=u/{p(l—p)]

is the normalized genetic variance of selfing among
individuals selfed i generations. The relation
E[G1P1] =p+ u holds because there is no covariance
between genetic and environmental effects, so
E[G1P] =E[G].

This normalization of genetic variance by ,u( 1 —
removes much of the dependence of genetic variance
upon the selfing rate. For example, if selfing rate is
controlled by n diploid loci, each with additive alleles
and all with equal effect, the un-normalized genetic
variance would be proportional to the binomial
variance p(l — p)/n, while the normalized genetic
variance would be proportional to 1/n.

To find Po, we need to compute the genetically

(3) programmed selfing rate in gametes by outcrossing
plants. Among outcrossing females of class i, this self-
ing rate is the expected frequency of selfing genes
among outcrossing individuals, divided by the expected

a ) Linear fitness function
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b ) Curved fitness function
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outcrossing rate,

p0(female gametes) = E[G,( 1 — P )]/E[ 1 — P,]
—

v1).

Among outcrossing males of class i, this selfing rate is a
mixture of the above and ,,

,u0(male gametes) = (1
— d) + d(1 — vi),

where d is the pollen discounting, i.e. the proportion
by which outcrossing pollen is reduced when a plant
selfs. The mean selfing rate among outcrossed plants is
the arithmetic average among males and females,
summed over all classes i, or

P0 = 1 —[(1 + d)/2]v),
where the P1 are defined as in eqn (1). These P, are
then iterated as described before to obtain equilibrium
selfing rates in the population.

When selfing was modelled in this way under a
linear fitness function, the mixed-mating equilibria,
shown in Fig. 1(c), showed patterns similar to Fig. 1(a).

Under a curved fitness function, a similar correspon-
dence to Fig. 1(b) was also observed (not shown).
When the normalized genetic variance is low (0.1), the
patterns of equilibria are close to those found by the
ESS model ( between 0.25 and 1.0 gave mixed-
mating), while when the normalized genetic variance is
high (0.99), equilibria are close to the one-locus model
prediction (6, between 0.40 and 0.85 resulted in
mixed mating). However, the correspondence is not
exact, as shown by an apparent 'curvature' of the
equilibria surface in Fig. 1(c) not evident in Fig. 1(a).
When the effect of inbreeding was also included by
specifying the normalized genetic variance for selfing in
generation i as v,/(2—F1), where F= 1 —(1/2)' is the
inbreeding coefficient of individuals selfed i genera-
tions, the correspondence to the previous models
became much closer.

Interestingly, the magnitude of environmental varia-
tion does enter into these quantitative genetic recursions;
this is probably due to the linear (as opposed to thres-
hold) selection of selfed individuals for succeeding
generations. Equilibria depend on the heritability only
through the magnitude of the genetic variance.

Dominance

We modified the model of a single major locus to allow
for dominance, with selfing being either completely
dominant or completely recessive, and assumed the
linear fitness function. When selfing is recessive, the
range of 6 giving mixed mating is much reduced rela-
tive to the model with no dominance, and complete
selfing occurs for all ô. <0.5 (Fig. id). In contrast,
when selfing is dominant, the range of 6 allowing
mixed mating is expanded relative to the no dominance
case. Also, mixed mating was stable for values of 6.
well below 0.5, and complete selfing was less likely
when dominant than when recessive.

Pollen discounting

Genotypes that self may suffer from a reduction of
pollen available for outcrossing ('pollen discounting' cf
Holsinger et al., 1984). To allow for this possibility, we
incorporated pollen discounting by reducing the pollen
contribution of genotypes by ds, where s, is the selfing
rate of plants selfed i generations. The parameter d is
the proportionate reduction in pollen available for out-
crossing in a plant which selfs completely. The para-
meter d ranges from 0 (no discounting) to 1 (complete
discounting). We assumed equal d among all geno-
types.

Under all modes of inheritance, pollen discounting
reduced the range of &. allowing mixed-mating (Fig.
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(A 0.0
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Fig. 2 Equilibrium selfing rates with 50 per cent pollen dis-
counting: (a) linear fitness function; (b) curved fitness func-
tion.
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2a and b). The effect is roughly linear with increasing
discounting. With high pollen discounting, selling is
almost never stable and the range of stable mixed-
mating systems is small. Also, as noted by previous
workers (e.g. Lloyd, 1979), pollen discounting raised
the equilibrium outcrossing rate (i.e. curves shift to the
left with increasing d).

Discussion

Maynard Smith (1977), in establishing conditions for
equilibrium partial selfing, considered the case of a
recessive allele for full selfing, and solved for condi-
tions which would permit both selfing and outcrossing
alleles to be maintained in the population. He assumed
that the results of his model held for any mechanism of
genetic control of selfing. When explicit genetic models
are compared, we find that the genetic control of self-
fertilization can have a major effect on the equilibrium
selfing rate. Equilibrium selling rates can differ by as
much as 0.3 between different genetic models
(compare single loci of large and small effect for

= 0.45 in Fig. la). In addition, the range of condi-
tions allowing mixed-mating are greatly dependent on
the mode of genetic control. We found mixed mating to
be less likely (i) when selling has high genetic variance,
such as when controlled by a single major gene of large
effect (Fig. la—c); (ii) when selling is recessive (Fig. id);
or (iii) when pollen discounting is allowed (Fig. 2).

The classical condition for an outcrossing popula-
tion to resist invasion of a selling allele is that the fit-
ness of plants selfed for one generation must be less
than one half that of outcrossed plants. In these calcula-
tions, this corresponds to &. > 1.0 for the linear fitness
function and 6. >0.67 for the curved function. This
prediction was confirmed by us, as in no case did we
observe mixed-mating systems for values of 6 greater
than these. However, our results differ from Maynard
Smith's conditions (ö <0.5) for the complete elimina-
tion of outcrossing from the population. Maynard
Smith's prediction for a single recessive selfing gene
was confirmed but with polygenic control of selfing,
outcros sing rates of at least 10 per cent were observed
for values of 60. as low as 0.3 (Fig. la). When 60, <0.5,
all selfed plants are at least half as fit as outcrossed
plants, and we expect selfing to be favoured even in frilly
inbred plants. That some genetic models permit out-
crossing to be maintained under this condition under-
scores the importance of the genetic control of selfing
to the equilibrium mating system.

It may at first seem unexpected that the genetic
control of selling influences the equilibrium selling
rate. However, the reason for this becomes evident if
we consider the distribution of selling genotypes

among plants selfed 0,l,2...g generations (Table 1). If
selfing rate is heritable, the selfing rate among individ-
uals selled i generations increases with increasing i,
and this difference is more pronounced when the sell-
ing rate has high genetic variance such as with a poly-
morphism of selling and outcrossing morphs. As this
difference becomes more pronounced, outcrossing
alleles occur primarily in high fitness outcrossed plants
and selling alleles primarily in low fitness inbred plants.
Thus, the selection differential between selfing and
outcrossing alleles becomes stronger, and mixed
mating systems become less likely.

Another way to understand how the genetic control
of selling influences its equilibrium value is to consider
the evolution of selfing in terms of competition
between genotypes of different inbreeding coefficients
(and not in the traditional terms of competition
between selfed and outcrossed genotypes). In this con-
ception, if the fitness of selfed progeny declines with F,
then selfed progeny of plants selfed for few generations
are favoured over selfed progeny of plants selfed for
many generations. Occasional outcrossing is disadvan-
tageous in the first generation because of the cost of
meiosis, but, over the longer term this cost is offset by
the advantage of lower breeding coefficients in subse-
quently selfed lines of grand progeny.

Under this interpretation, the genetic control of self-
ing assumes importance in the following way. With few
genes of major effect, outcrossed plants are less likely
to subsequently produce selfed progeny; instead, out-
crossed genotypes are 'locked' into outcrossing, and
suffer repeated costs of meiosis, resulting in narrowed
conditions for mixed mating. Likewise, selling geno-
types are locked into low fitness inbred plants. By
contrast, if genetic variance for selling is low (due to
many genes of small effect), selling genotypes can occa-
sionally outcross without risk of becoming locked into
outcrossing. The long-term benefit of outcrossing in
terms of lowered inbreeding coefficients in selling lines
is realized, and mixed mating becomes a stable strategy
of reproduction.

The maintenance of some trace amount of outcross-
ing in populations with very low inbreeding depression
(60. <0.5) results from these long-term benefits of out-
crossing. But it is only possible if the genetic control of
selling prevents outcrossing genotypes from being
locked into outcrossing. If selling is recessive, the out-
crossed progeny, which will usually be heterozygous at
the selfing locus, will tend to outcross again. Thus the
advantage of occasional outcrossing does not occur,
and mixed mating is not observed for 60. <0.5. If self-
ing alleles are dominant, however, then all outcrossed
progeny (the progeny of rare recessive parents) will be
heterozygous at selling loci. They will produce selfed
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offspring, and the advantage of occasional outcrossing
is realized. Consequently, some outcrossing is main-
tained even at very low values of 6,, when selling is
dominant.

Implications for mating system evolution

Our results show that mixed mating systems are more
likely to occur as a monomorphic optimal strategy
under polygenic control, than as a balanced, single-
locus polymorphism. A population in which all individ-
uals produce an equal proportion of selfed offspring
with little variation (or in which each plant sells with
equal probability) is more likely to be stable than a
population in which a proportion of the individuals
self-fertilize and the rest outcross. The range of 6.
permitting mixed mating is widest when the genetic
basis of the mating system is polygenic. This result
suggests that such genetic control may be the most
common system among natural populations practising
mixed mating. By the same reasoning, selling alleles
within mixed-mating populations are more likely to be
of additive or dominant effect, as opposed to recessive,
since such effects also give a wide range of 60. allowing
mixed-mating (Fig. id). Conversely, selling taxa could
likely be derived from the fixation of recessive genes, as
opposed to genes with additive or dominant effects, as
recessive inheritance shifts equilibria towards higher
selfing (Fig. id). Our observations regarding the
narrowing of conditions favouring mixed mating under
pollen discounting also suggest that substantial pollen
discounting is not to be expected in habitually mixed-
mating species. Likewise, our findings suggest that
mixed mating systems should arise more frequently
when fitness shows a linear decrease with increasing F.

Few workers have attempted to document the
genetic basis of selfing in partially selling species, or
have attempted to document the genetic basis for
differences between con-generic selling and outcross-
ing species. The few studies which have been per-
formed tend to be with genera with conspicuous
intrapopulation polymorphisms, such as Senecio
(Marshall & Abbott, 1982, 1984) and Eichhornia
(Barrett et al., 1989). These systems usually show
major gene control (e.g. Impomoea purpurea, Ennos &
Clegg, 1983), and provide tractable systems for experi-
ments. Since we have found broader conditions favour-
ing mixed mating under polygenic (as opposed to single
gene) models, polygenic control of the selling rate
seems more likely in documented mixed mating species
such as Mimulus (Ritland & Ganders, 1987; Ritland &
Ritland, 1990) and Turnera ulmifolia (Shore & Barrett,
1990). Genetic studies of selfing in such taxa have been
rare (Barrett & Eckert, 1990).

Holsinger (1988) noted that the average inbreeding
depression in a population does not adequately pre-
dict the course of mating system evolution. The popu-
lation average levels of inbreeding depression in Table
1 (6<0.5) confirm this result. Though one would
expect that the selling rate will increase, the equilibria
shown are stable. The reason for this is that the selfing
allele occurs at higher frequency among the highly
selfed, less fit individuals where they experience
stronger selective disadvantage than would be pre-
dicted by the average level of inbreeding depression in
the population. However, the average fitness of the
selling and outcrossing alleles summed over each
generation class, is exactly equal at equilibrium.

Stebbins (1950) suggested that mating systems strike
a balance between the immediate fitness of the individ-
ual, which favours selling, and the long-term fitness of
the population, which favours outcrossing. However,
few models have presented explicit mechanisms of this
process. The maintenance of outcrossing even at very
low values of d is due to a long-term benefit in terms of
the number of grand progeny produced. Both
Holsinger (1988) and Campbell (1986) noted that
mixed mating systems could be stable for values of 6
(population average in their models) substantially less
than 0.5, and in one case when 6 was as low as 0.01.
Their results can be explained by the competition
among individuals of different inbreeding coefficients
outlined above. The maintenance of traits which
promote outcrossing in predominantly selfing species
(e.g. Motton & Antonovics, 1992), and the apparent
lack of completely seifing species (Waller, 1986) may
reflect this advantage to occasional outcrossing. It is
not necessary to resort to species selection arguments
to explain these findings.

An important role in mating system evolution has
recently been ascribed to the associations that develop
between loci which modify the selling rate and
genotypes at loci causing inbreeding depression.
Uyenoyama & Wailer (1991a,c; see also Holsinger,
1988, 1991) demonstrated that alleles which increase
the selling rate may become associated with high fit-
ness genotypes at loci carrying deleterious recessive
mutations. They also showed (Uyenoyama & Wailer,
1991b) that selfing alleles can become associated with
lower fitness genotypes at loci which show over-
dominance. These associations derive from the distri-
bution of selling alleles across individuals selfed for
different numbers of consecutive generations (Table 1).
Uyenoyama & Wailer assumed alleles of small effect at
loci controlling selling. Since there are greater differ-
ences between outcrossed and selfed individuals when
genes of large effect control the selling rate (Table 1),
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these associations will be more pronounced for alleles
with a large effect on the selfing rate.

The fitness functions

Our predictions rest upon the model suggested by
Maynard Smith (1977), which postulates that the fit-
ness of selfed progeny decreases with increased
inbreeding coefficients of parents. In order for mixed
mating systems to be stable the fitness of plants selfed
for many generations must be less that that of plants
selfed one generation. Given this consideration, our
result that the range of &. allowing mixed mating
systems should be narrowed with a curved fitness func-
tion is easily understood. If fitness functions are
curved, more than half of the total fitness loss occurs in
the first generation of selfing, and the subsequent loss
of fitness with continued selling is reduced. In other
words, the curved fitness function is closer to the usual
assumption of constant for all selfed offspring,
which does not allow mixed mating.

The relationship between fitness and the number of
consecutive generations of selfing will be governed by
two factors: (i) the decrease in heterozygosity with
successive generations of selling; and (ii) the removal of
genetic load through purging. If purging is such that the
fitness of individuals selfed for many generations is
greater than 0.5, the predictions of our model will not
hold for a deterministic calculation such as ours.
However, if purging is slow enough that fitness does
not recover within inbred lines (< 10 generations) then
the model will hold.

Barrett & Charlesworth (1991) calculated the
expected fitness function under a number of models of
inbreeding depression. Overdominance at a few loci
can lead to declining fitness functions. Moreover,
mixed mating systems can be stable with over-
dominance fitness models (Charlesworth & Charles-
worth, 1990). Conversely if inbreeding depression is
due to recessive lethal mutations at a few loci, then
purging is rapid and the fitness of highly inbred individ-
uals often exceeds that of outcrossed plants. Mixed
mating systems are not stable for these conditions
(Charlesworth et al., 1990). With less intense selection
against the mutations, however, the rate of purging
slows, but fitness will nonetheless recover. Extending
Barrett & Charlesworth's model to many mutations
with very small fitness effects, purging will not appre-
ciably affect fitness for many consecutive generations
of selling (Latta, 1992). Moreover, with very many
recessive mutations, the assumption that mutations are
unlinked will not be met. When mutations are linked in
repulsion phase, linkage blocks are effectively over-
dominant, and purging may be greatly slowed (Jones,
1917, 1957).

Theories about inbreeding depression are of limited
use without empirical studies of the genetic architec-
ture of load (e.g. Hedrick & Muona, 1990). Several
empirical data sets suggest that fitness does indeed
continue to decline with consecutive generations of
selfing, at least in some organisms. Hollingsworth &
Maynard Smith (1955) followed 16 generations of sib
mating in Drosophila melanogaster, and demonstrated
that purging of genetic load did not begin until 14 or 15
generations. Wilton et al. (1989) have also demon-
strated that purging in Drosophila is weak enough to
take many generations. Damgaard data from several
plant species which show monotonically declining fit-
ness functions. Moreover, many of these species prac-
tise mixed mating. and Damgaard et a!. (1992) have
shown that their selfing rates are accurately predicted
by Maynard Smith's model.
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