Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Why do maternally inherited microorganisms kill males?
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 1993

Why do maternally inherited microorganisms kill males?

  • Gregory D D Hurst1 &
  • Michael E N Majerus1 

Heredity volume 71, pages 81–95 (1993)Cite this article

  • 1954 Accesses

  • 163 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Maternally-inherited male killing microorganisms are known in a number of insect species. We here discuss the evolutionary reasons for such behaviour through examining the ongoing dynamics of these elements. In cases where death occurs late in the life cycle, horizontal transmission associated with male death occurs but in others no such direct advantage to killing the individual appears to exist. The evidence that early male killing is analogous to primary sex ratio distortion through increasing the fitness with respect to producing females from increases in resources to surviving (female) offspring and through the prevention of inbreeding is discussed. The early life history of many of these species suggests an early resource advantage may accrue from male killing. Inbreeding avoidance appears to be an important factor in at least two cases. The potential for horizontal transmission to maintain these elements is also discussed. It is concluded that male killing appears to be an adaptive strategy for the microorganism in most cases.

Similar content being viewed by others

Transcriptional control of the Cryptosporidium life cycle

Article 29 May 2024

Modeling host-associating microbes under selection

Article Open access 22 June 2021

Engineering complex communities by directed evolution

Article 13 May 2021

Article PDF

References

  • Agarwala, B K. 1991. Why do ladybirds (Coleoptera: Coccinellidae) cannibalize? J Biosci, 16, 103–109.

    Google Scholar 

  • Andre, F. 1934. Notes on the biology of Oncopeltus fasciatus (Dallas). Iowa State Coll J Sci, 9, 73–87.

    Google Scholar 

  • Ayala, F J, Powell, J R, Tracey, M L, Mourao, C A, and Perez-Salas, S. 1972a. Enzyme variability in the Drosophila willistoni group. III. Genie variation in natural populations of Drosophila willistoni. Genetics, 70, 113–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala, F J, Powell, J R, and Tracey, M L. 1972b. Enzyme variability in the Drosophila willistoni group. V. Genie variations in natural population of Drosophila equinoxalis. Genet Res, Camb, 20, 19–42.

    CAS  Google Scholar 

  • Ayala, F J, Tracey, M L, Barr, L G, and Ehrenfeld, J G. 1974. Genetic and reproductive differentiation of the sub-species, Drosophila equinoxalis carribiensis. Evolution, 28, 24–41.

    PubMed  Google Scholar 

  • Banks, C J. 1955. An ecological study of Coccinellidae (Col.) associated with Aphis fabae Scop, on Vicia fabia. Bull Ent Res, 46, 561–587.

    Google Scholar 

  • Banks, C J. 1956. Observations on the behaviour and mortality in Coccinellidae before dispersal from the egg shells. Proc R Ent Soc Lond (A), 31, 56–60.

    Google Scholar 

  • Birch, L C, and Battaglia, B. 1957. The abundance of Drosophila willistoni in relation to food in natural populations. Ecology, 38, 165–166.

    Google Scholar 

  • Bishara, I. 1934. The cotton worm, Prodenia litura F., in Egypt. Bull Soc R Ent d'Egypte, 18, 288–416.

    Google Scholar 

  • Bongers, J, and Eggermann, W. 1971. Der Einfluß des Subsozialverhaltens der spezialisierten Samensauger Oncopeltus fasciatus Dall. und Dysdercus fasciatus Sign, auf ihre Ernahrung. Oecologia, 6, 293–302.

    PubMed  Google Scholar 

  • Brimacombe, L C. 1980. All-female broods in field and laboratory populations of the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Bull Ent Res, 70, 475–481.

    Google Scholar 

  • Burla, H, Da Cunha, A B, Calcavanti, A G L, Dobzhansky, T H, and Pavan, C. 1950. Population density and dispersal rates in Brazilian Drosophila willistoni. Ecology, 31, 393–404.

    Google Scholar 

  • Chang, K S, and Morimoto, N. 1988. Life table studies of the walnut leaf beetle, Gastrolina depressa (Coleoptera: Chrysomelidae), with special attention to aggregation. Res Popul Ecol, 30, 297–313.

    Google Scholar 

  • Chang, K S, Shiraishi, T, Nakasuji, F, and Morimoto, N. 1991. Abnormal sex ratio condition in the Walnut leaf beetle, Gastrolina depressa (Coleoptera: Chrysomelidae). Appl Ent Zooi, 26, 299–306.

    Google Scholar 

  • Clarke, C, Johnston, G, and Johnston, B. 1983. All female broods in Hypolimnas bolina (L.). A resurvey of West Fiji after 60 years. Biol J Linn Soc, 19, 221–235.

    Google Scholar 

  • Clarke, C, Sheppard, P M, and Scali, V. 1975. All female broods in the butterfly Hypolimnas bolina (L.) Proc R Soc Lond B, 189, 29–37.

    Google Scholar 

  • Crozier, R H. 1970. On the potential for genetic variability in haplodiploidy. Genetica, 41, 551–556.

    CAS  PubMed  Google Scholar 

  • Danthanarayana, W. 1975. The bionomics, distribution and host range of the light brown apple moth, Epiphyas postvittana (Walk.) (Tortricidae). Aust J Zooi, 23, 419–437.

    Google Scholar 

  • Danthanarayana, W. 1983. Population ecology of the light brown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae). J Anim Ecol, 52, 1–33.

    Google Scholar 

  • De Borba, C M B, and Napp, M. 1986. Genetic-ecologic correlations in the enzyme variability of Drosophila willistoni. Rev Bras, de Gen, 9, 593–614.

    Google Scholar 

  • Dingle, H. 1968. Life history and population consequences of density, photo-period, and temperature in a migrant insect, the milkweed bug, Oncopeltus. Am Nat, 102, 149–163.

    Google Scholar 

  • Dixon, A F G. 1970. Factors limiting the effectiveness of the coccinellid beetle, Adalia bipunctata (L.), as a predator of the sycamore aphid Drepanosiphum platanoides (Schr.) J Anim Ecol, 39, 739–751.

    Google Scholar 

  • Earle, N W, and Macfarlane, J. 1968. A unisexual strain of the salt marsh caterpillar, Estigmene acrea. Ann Ent Soc Am, 61, 949–953.

    Google Scholar 

  • Ebbert, M. 1991. The interaction phenotype in the Drosophila wiisiow-spiroplasma symbiosis. Evolution, 45, 971–988.

    PubMed  Google Scholar 

  • Geier, P W, and Briese, D T. 1980. The light brown apple moth, Epiphyas postvittana (Walker). 4. Studies on population dynamics and injuriousness to apples in Australian Capital Territory. Austr J Ecol, 5, 63–93.

    Google Scholar 

  • Geier, P W, Briese, D T, and Lewis, T. 1978. The light brown apple moth Epiphyas postvittana (Walker). 2. Uneven sex ratios and a condition contributing to them in the field. Austr J Ecol, 3, 467–488.

    Google Scholar 

  • Gherna, R L, Werren, J H, Weisburg, W, Cote, R, Woese, C R, Mandelco, L, and Brenner, D J. 1991. Arsenophus nasoniae gen.-nov., sp.-nov., the causative agent of the son killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bact, 41, 563–565.

    Google Scholar 

  • Gordon, D M, and Stewart, R K. 1988. Demographic characteristics of the stored products moth Cadra cautella. J Anim Ecol, 57, 627–644.

    Google Scholar 

  • Gotoh, T, and Niuima, K. 1986. Characteristics and agents of abnormal sex ratios (SR) in two aphidophagous coccinellid species. In: Hodek, I. (ed.), Ecology of the Aphidophaga, Academia, Prague, pp. 545–550.

    Google Scholar 

  • Grant, B, Burton, S, Contoreggi, C, and Rothstein, M. 1980. Outbreeding via frequency-dependent mate selection in the parasitoid wasp, Nasonia (=Mormoniella) vitripennis Walker. Evolution, 34, 983–992.

    PubMed  Google Scholar 

  • Gu, H, and Danthanarayana, W. 1990. Age related flight and reproductive performance of the light brown apple moth, Epiphyas postvittana. Entomol Exp Appl, 54, 109–115.

    Google Scholar 

  • Hackett, K J, Lynn, D E, Williamson, D L, Ginsberg, A S, and Whitcomb, R F. 1985. Cultivation of the Drosophila spiroplasma. Science, 232, 1253–1255.

    Google Scholar 

  • Helle, W. 1965. Inbreeding depression in an arrhenokotous mite, Tetranychus urticae. Ent Exp Appl, 8, 299–304.

    Google Scholar 

  • Hemptine, J-L, Dixon, A F G, and Coffin, J. 1992. Attack strategies of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia, 90, 238–245.

    Google Scholar 

  • Hill, D S. 1987. Agricultural Insect Pests of Temperate Regions and Their Control. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hinds, W E. 1904. Life history of the salt marsh caterpillar (Estigmene acrea Dru.) at Victoria, Tex. US Dept Agric Div Entomol Bull, 44, 80–84.

    Google Scholar 

  • Hu, K. 1979. Maternally inherited ‘sonless’ abnormal sex ratio condition in the ladybeetle Harmonia axyridis. Acta Genet Sin, 6, 296–304.

    Google Scholar 

  • Hurst, G D D, Majerus, M E N, and Walker, L E. 1992. Cytoplasmic male killing elements in Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). Heredity, 69, 84–91.

    Google Scholar 

  • Hurst, G D D, Majerus, M E N, and Walker, L E. 1993. The importance of cytoplasmic male killing elements in natural populations of the two spot ladybird, Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). Biol J Linn Soc (in press).

  • Hurst, G D D, Bourke, D, Elliott, R, Hudson, E, Irving, W, Nicholson, J, Pearson, M, Ransford, M, Sands, Z, Sloggett, J, Walker, L E, and Majerus, M E N. (in prep). Evidence for a resource advantage to male killing behaviour of bacteria in Adalia bipunctata.

  • Hurst, L D. 1991. The incidences and evolution of cytoplasmic male killers. Proc R Soc Lond B, 244, 91–99.

    Google Scholar 

  • Hurst, L D. 1993. The incidences, mechanisms and evolution of cytoplasmic sex ratio distorters in animals. Biol Reviews, 68, 121–193.

    Google Scholar 

  • Ikeda, H. 1970. The cytoplasmically-inherited ‘sex-ratio’ condition in natural and experimental populations of Drosophila bifasciata. Genetics, 65, 311–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, D J. 1956. Notes on Hymenopterous parasites bred from eggs of Dytiscidae in Fife. J Soc Br Ent, 5, 144–149.

    Google Scholar 

  • Jackson, D J. 1958. Observations on the biology of Carnaphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae. I. Methods of rearing and numbers bred on different host eggs. Trans R Ent Soc Lond, 110, 533–554.

    Google Scholar 

  • Jackson, D J. 1961. Observations on the biology of Carnaphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae. II. Immature stages and seasonal history with a review of Mymarid larvae. Parasitology, 51, 269–294.

    Google Scholar 

  • Jackson, D J. 1966. Observations on the biology of Carnaphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae. III. The adult life and sex ratio. Trans R Ent Soc Lond, 118, 23–49.

    Google Scholar 

  • Kawai, A. 1978. Sibling cannibalism in the first instar larvae of Harmonia axyridis Pallas (Coleoptera, Coccinellidae). KontyÛ, 46, 14–19.

    Google Scholar 

  • Kimura, M T, Toda, M J, Beppu, H, and Watabe, H. 1977. Breeding sites of Drosophilid flies in and near Sapporo, Northern Japan, with supplementary notes on the adult feeding habits. Kontyû, 45, 571–582.

    Google Scholar 

  • King, P E, Askew, R R, and Sanger, C. 1969. The detection of parasitised hosts by males of Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and some possible implications. Proc R Ent Soc Lond A, 44, 85–90.

    Google Scholar 

  • Kirkendall, L R. 1989. Within-harem competition between Ips females, an overlooked component of density-dependent larval mortality. Holarct Ecol, 12, 477–487.

    Google Scholar 

  • Lanier, G N, and Oliver, J H. 1966. Sex ratio condition: unusual mechanism in bark beetles. Science, 153, 208–209.

    CAS  PubMed  Google Scholar 

  • Lanier, G N. 1966. Interspecific mating and cytological studies of closely related species of Ips DeGeer and Orthotomictus Ferrari (Coleoptera: Scolytidae). Can Ent, 98, 175–188.

    Google Scholar 

  • Legrand, J J, Legrand-Hamelin, E, and Juchault, P. 1987. Sex determination in Crustacea. Biol Rev, 62, 439–470.

    Google Scholar 

  • Leslie, T F. 1984. A sex ratio condition in Oncopeltus fasciatus. J Hered, 75, 260–264.

    Google Scholar 

  • Leventhal, E A. 1965. A study of the ‘sex-ratio’ condition in Drosophila bifasciata. Am Zool, 5, 649.

    Google Scholar 

  • Lewis, D. 1941. Male sterility in natural populations of hermaphroditic plants: the equilibrium between females and hermaphrodites to be expected with different types of inheritance. New Phytol, 40, 56–63.

    Google Scholar 

  • Lus, Y Y. 1947a. Some aspects of the population increase in Adalia bipunctata 2. The strains without males. Dokl Akad Nauk SSSR, 57, 951–954.

    Google Scholar 

  • Lus, Y Y. 1947b. Some rules of reproduction in populations of Adalia bipunctata: heterozygosity of lethal alleles in populations. Dokl Akad Nauk SSSR, 57, 825–828.

    Google Scholar 

  • Maclellan, C R. 1973. Natural enemies of the light brown apple moth, Epiphyas postvittana, in the Australian capital territory. Can Ent, 105, 681–700.

    Google Scholar 

  • Magni, G E. 1953. 'Sex-ratio': a non-Mendelian character in Drosophila bifasciata. Nature, 172, 81.

    CAS  PubMed  Google Scholar 

  • Magni, G E. 1954. Thermic cure of cytoplasmic ‘sex-ratio’ in Drosophila bifasciata. Caryologia (Suppl.), 6, 1213–1216.

    Google Scholar 

  • Magni, G E. 1959. II carattere sex ratio in popolazioni naturali ed artificiali di Drosophila bifasciata. 1st Lombardo (Rend Sci), 93, 103–116.

    Google Scholar 

  • Malogolowkin-Cohen, C H, Levene, H, Dobzhansky, N P, and Simmons, A S. 1964. Inbreeding and mutational load in natural populations of Drosophila willistoni. Genetics, 50, 1299–1311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew, G F. 1888. Life histories of Rhopalocera from the Australian region. Trans Ent Soc Lond, 1888, 137–138.

    Google Scholar 

  • Matsuka, M, Hashi, H, and Okada, I. 1975. Abnormal sex ratio found in the lady beetle Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Appl Entomol Zool, 10, 84–89.

    Google Scholar 

  • Miller, D R, and Borden, J H. 1985. Life history and biology of Ips latidens (Leconte) (Coleoptera: Scolytidae). Can Ent, 117, 859–871.

    Google Scholar 

  • Miller, D R, Borden, J H, King, G G S, and Slessor, K N. 1991. Ipsenol: an aggregation pheromone for Ips latidens (Leconte) (Coleoptera: Scolytidae). J Chem Ecol, 17, 1517–1527.

    CAS  PubMed  Google Scholar 

  • Ng, S M. 1986. Effects of first instar cannibalism on the first instar larvae of four species of aphidophagous Coccinellidae. In: Hodek, 1. (ed.), Ecology of the Aphidophaga, Academia, Prague, pp. 69–75.

    Google Scholar 

  • Niuima, K, and Nakajima, K. 1981. Abnormal sex ratio in Menochilius sexmaculatus (Fabricius). Bull Fac Agric Tamagawa Univ, 21, 59–67.

    Google Scholar 

  • Niuima, K. 1983. Experimental transfer of abnormal sex ratio in two ladybird species. Bull Fac Agric Tamagawa Univ, 23, 11–17.

    Google Scholar 

  • Osawa, N. 1989. Sibling and non-sibling cannibalism by larvae of a lady beetle Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in the field. Res Popul Ecol, 31, 153–160.

    Google Scholar 

  • Osawa, N. 1992. Sibling cannibalism in the ladybird beetle Harmonia axyridis: fitness consequences for mother and offspring. Res Popul Ecol, 34, 45–55.

    Google Scholar 

  • Pavan, C, Cordeiro, A R, Dobzhansky, N, Dobzhansky, T H, Malogolowkin, C, Spassky, B, and Wedel, M. 1950. Concealed genie variability in Brazilian populations of Drosophila willistoni. Genetics, 36, 13–30.

    Google Scholar 

  • Poulton, E B. 1928. Adaptations which discourage inbreeding in Lepidoptera and other insects. Proc R Ent Soc Lond, 3, 18–20.

    Google Scholar 

  • Ralph, C P. 1976. Natural food requirements of the large milkweed bug, Oncopeltus fasciatus (Hemiptera: Lygaediae), and their relation to gregariousness and host plant morphology. Oecologia, 26, 157–173.

    PubMed  Google Scholar 

  • Ralph, C P. 1977. Effect of host plant density on populations of a specialized, seed sucking bug, Oncopeltus fasciatus. Ecology, 58, 799–809.

    Google Scholar 

  • Sauer, D, and Feir, D. 1973. Studies on natural populations of Oncopeltus fasciatus (Dallas), the large milkweed bug. Am Midi Nat, 90, 13–37.

    Google Scholar 

  • Saul, G, Whiting, P W, Saul, S W, and Heidner, C A. 1965. Wildtype and mutant stocks of Mormoniella. Genetics, 52, 1317–1327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds, H W. 1923a. Families of Hypolimnas bolina L. bred from known female parents from different Fijian islands. Trans R Ent Soc Lond, 1923, 651–662.

    Google Scholar 

  • Simmonds, H W. 1923b. All female families of Hypolimnas bolina L., bred in Fiji by H. W. Simmonds. Proc R Ent Soc Lond, 1923, ix–xii.

    Google Scholar 

  • Simmonds, H W. 1926. Sex ratio of Hypolimnas bolina L., in Viti Levu, Fiji. Proc R Ent Soc Lond, 1, 29–32.

    Google Scholar 

  • Simmonds, H W. 1928. Mr H. W. Simmonds' conclusion that all-female-producing females form a persistent strain in Suva. Proc R Ent Soc Lond, 3, 43–44.

    Google Scholar 

  • Simmonds, H W. 1930. Further notes on Hypolimnas bolina L. in Fiji. Proc R Ent Soc Lond, 5, 75–77.

    Google Scholar 

  • Skinner, S W. 1982. Maternally inherited sex ratio in the parasitoid wasp Nasonia vitripennis. Science, 215, 1133–1134.

    CAS  PubMed  Google Scholar 

  • Skinner, S W. 1985. Son-killer: a third extrachromosomal factor affecting sex ratios in the parasitoid wasp Nasonia vitripennis. Genetics, 109, 745–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokoloff, A. 1966. Morphological variation in natural and experimental populations of Drosophila pseudoobscura and Drosophila persimilis. Evolution, 20, 49–71.

    PubMed  Google Scholar 

  • Stouthamer, R, Luck, R F, and Hamilton, W D. 1990. Antibiotics cause parthenogentic Trichogramma Hymenoptera/Trichogrammatidae to revert to sex. Proc Natl Acad Sci USA, 87, 2424–2427.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahasi, F, and Kuwahara, Y. 1970. Studies on sex pheromones in the Pyralidae. III. The inheritance of the abnormal sex ratio condition in a strain of the almond moth Cadra cautella Walker (Pyctinae). Botyu-Kagaku, 35, 11–21.

    Google Scholar 

  • Taylor, C E, and Powell, J R. 1983. Population structure of Drosophila: genetics and ecology. In: Ashburner, M., Carson, H. L. and Thompson, J. N. (eds), The Genetics and Biology of Drosophila, Vol. 3, Academic Press, pp. 29–59.

    Google Scholar 

  • Uyenoyama, M K, and Feldman, M W. 1978. The genetics of sex ratio distortion by cytoplasmic infection under maternal and contagious transmission: an epidemiological study. Theor Popul Biol, 14, 471–497.

    CAS  PubMed  Google Scholar 

  • Vane-Wright, R I, Ackery, P R, and Smiles, R L. 1977. The polymorphism, mimicry and host plant relationships of Hypolimnas butterflies. Biol J Linn Soc, 9, 285–297.

    Google Scholar 

  • Ward, R H, and Sing, C F. 1970. A consideration of the power of the χ2 test to detect inbreeding effects in natural populations. Am Nat, 104, 355–365.

    Google Scholar 

  • Werren, J H. 1987. The coevolution of autosomal and cytoplasmic sex ratio factors. J Theor Biol, 124, 317–334.

    Google Scholar 

  • Werren, J H, Skinner, S W, and Huger, A M. 1986. Male killing bacteria in a parasitic wasp. Science, 231, 990–992.

    CAS  PubMed  Google Scholar 

  • Williamson, D L, and Poulson, D F. 1979. Sex ratio organisms (Spiroplasmas) of Drosophila. In: R. F. Whitcomb and J. G. Tully (eds), The Mycoplasmas, vol. III, Academic Press, New York, pp. 175–208.

    Google Scholar 

  • Wratten, S D. 1973. The effectiveness of the coccinellid beetle, Adalia bipunctata (L.) as a predator of the lime aphid, Eucallipterus tiliae L. J Anim Ecoi, 42, 785–802.

    Google Scholar 

  • Wratten, S D. 1976. Searching by Adalia bipunctata (L.) (Coleoptera: Coccinellidae) and escape behaviour of its aphid and ciccadellid prey on lime (Tilia × vulgaris Hayne). Ecol Entomol, 1, 139–142.

    Google Scholar 

  • Young, W R, and A Sifuentes, J A. 1959. Biological and control studies on Estigmene acrea (Drury), a pest of corn in the Yaqui valley, Sonora, Mexico. J Econ Ent, 52, 1109–1111.

    CAS  Google Scholar 

  • Zaher, M A, and Moussa, M A. 1961. Effects of population density on Prodenia litura (Lepidoptera: Noctuidae). Ann Ent Soc Am, 54, 145–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK

    Gregory D D Hurst & Michael E N Majerus

Authors
  1. Gregory D D Hurst
    View author publications

    Search author on:PubMed Google Scholar

  2. Michael E N Majerus
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurst, G., Majerus, M. Why do maternally inherited microorganisms kill males?. Heredity 71, 81–95 (1993). https://doi.org/10.1038/hdy.1993.110

Download citation

  • Received: 21 December 1992

  • Issue date: 01 July 1993

  • DOI: https://doi.org/10.1038/hdy.1993.110

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cytoplasmic microorganisms
  • horizontal transmission
  • inbreeding avoidance
  • male killing
  • maternal inheritance
  • resource redistribution

This article is cited by

  • Inheritance through the cytoplasm

    • M. Florencia Camus
    • Bridie Alexander-Lawrie
    • Gregory D. D. Hurst

    Heredity (2022)

  • Coexistence of Two Male-Killers and Their Impact on the Development of Oriental Tea Tortrix Homona magnanima

    • Takumi Takamatsu
    • Hiroshi Arai
    • Maki N. Inoue

    Microbial Ecology (2021)

  • Incidence and Diversity of Torix Rickettsia–Odonata Symbioses

    • Panupong Thongprem
    • Helen R. Davison
    • Gregory D. D. Hurst

    Microbial Ecology (2021)

  • Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations

    • Xing-Zhi Duan
    • Jing-Tao Sun
    • Xiao-Yue Hong

    Microbiome (2020)

  • Incomplete offspring sex bias in Australian populations of the butterfly Eurema hecabe

    • D J Kemp
    • F E Thomson
    • I Iturbe-Ormaetxe

    Heredity (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited