Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
North–south differences in circadian eclosion rhythm in European populations of Drosophila subobscura
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1993

North–south differences in circadian eclosion rhythm in European populations of Drosophila subobscura

  • P Lankinen1 

Heredity volume 71, pages 210–218 (1993)Cite this article

  • 872 Accesses

  • 51 Citations

  • Metrics details

Abstract

The circadian pupal eclosion rhythm was studied in 12 strains of Drosophila subobscura originating from two regions: Scandinavia (56–63°N), and the Canary Islands (28°N). In most parameters of the rhythm, ample variability was found both within and between the regions. Among the strains the phase of the eclosion median in an entraining diel light-dark cycle varied by 8.1 h, and the period of the free-running rhythm (τ) by 2.2 h. In the comparison between the two regions, the Scandinavian entrained rhythm had on average a 2.8 h earlier phase, τ was 0.9 h shorter, and the amplitude of the rhythm was lower. Of the rhythm parameters, early phase was correlated with short τ (r = 0.76), and the amplitude of the entrained rhythm was correlated with the amplitude of the free-running rhythm (r = 0.98). In addition to the geographical variation, a putative arhythmic recessive autosomal mutant was found to segregate in one Scandinavian strain. The lack of photoperiodic adult diapause was confirmed in D. subobscura. The results show that the circadian eclosion rhythm in a non-photoperiodic species can vary latitudinally in a fashion similar to that of photoperiodic species.

Similar content being viewed by others

Adaptation to photoperiod via dynamic neurotransmitter segregation

Article 17 July 2024

Synaptic connectome of the Drosophila circadian clock

Article Open access 05 December 2024

Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms

Article Open access 30 September 2021

Article PDF

References

  • Afonso, J M, Voltz, A, Hernández, M, Ruttkay, H, González, M, Larruga, J M, Cabrera, V M, and Sperlich, D. 1990. Mitochondrial DNA variation and genetic structure in Old-World populations of Drosophila subobscura. Mol Biol Evol, 7, 123–142.

    CAS  Google Scholar 

  • Begon, M. 1976. Temporal variations in the reproductive condition of Drosophila obscura Fallén and D. subobscura Collin. Oecologia, Berl, 23, 31–47.

    Article  Google Scholar 

  • Brncic, D, and Budnic, N. 1984. Experiments on sexual isolation between Chilean and European strains of Drosophila subobscura. Experientia, 40, 1014–1016.

    Article  Google Scholar 

  • Budnik, M, Cifuentes, L, and Brncic, D. 1991. Quantitative analysis of genetic differentiation among European and Chilean strains of Drosophila subobscura. Heredity, 67, 29–33.

    Article  Google Scholar 

  • Cabrera, V M, González, A M, Hernández, M, Larruga, J M, and Martell, M. 1985. Microgeographic and temporal genetic differentiation in natural populations of Drosophila subobscura. Genetics, 110, 247–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton, D L, and Paietta, J V. 1972. Selection for circadian eclosion time in Drosophila melanogaster. Science, 178, 994–995.

    Article  CAS  Google Scholar 

  • Engelmann, W, and Mack, J. 1979. Different oscillators control the circadian rhythms of eclosion and activity in Drosophila. J Compl Physiol, 33, 583–608.

    Google Scholar 

  • Gosteli, M. 1991. Differential flight activity among karyotypes: daily and weather-induced changes in chromosomal inversion polymorphism in natural populations of Drosophila subobscura. Genetica, 84, 129–136.

    Article  CAS  Google Scholar 

  • Hall, J C. 1990. Genetics of circadian rhythms. Annu Rev Genet, 24, 659–697.

    Article  CAS  Google Scholar 

  • Ikeda, H, and Saito, M. 1983. Effects of circadian eclosion rhythm and temperature on estimating the relative rate of development in Drosophila mercarotum. Zoological Magazine, 92, 174–179.

    Google Scholar 

  • Konopka, R J, and Benzer, S. 1971. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 68, 2112–2116.

    Article  CAS  Google Scholar 

  • Krimbas, C B, and Loukas, M. 1980. The inversion polymorphism of Drosophila subobscura. Evol Biol, 12, 163–234.

    Article  Google Scholar 

  • Krimbas, C B, and Powell, J R. 1992. Inversion Polymorphism of Drosophila. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kyriacou, C B, Oldroyd, M, Wood, J, Sharp, M, and Hill, M. 1990. Clock mutations alter developmental timing in Drosophila. Heredity, 64, 395–401.

    Article  Google Scholar 

  • Lankinen, P. 1985. Genetic variation of circadian eclosion rhythm, and its relation to photoperiodism in Drosophila littoralis. Doctoral dissertation, University of Oulu.

    Google Scholar 

  • Lankinen, P. 1986a. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J Comp Physiol A, 159, 123–142.

    Article  Google Scholar 

  • Lankinen, P. 1986b. Genetic correlation between circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis. J Biol Rhythms, 1, 101–118.

    Article  CAS  Google Scholar 

  • Lankinen, P. 1987. Latitudinal variation of time measurement in Drosophila phalerata. Proc 10th Eur Drosoph Res Conf, Barcelona, 157.

  • Lankinen, P. 1993a. Independent inheritance of photoperiodic diapause and circadian eclosion rhythm in long term crosses between geographically variable strains of Drosophila littoralis. J Biol Rhythms, in press.

  • Lankinen, P. 1993b. Characterization of linne, a new autosomal eclosion rhythm mutant in Drosophila subobscura. Behavior Genetics, 23, in press.

    Article  CAS  Google Scholar 

  • Lankinen, P, and Lumme, J. 1982. An improved apparatus for recording the eclosion rhythm in Drosophila. Dros Inf Serv, 58, 161, 163.

    Google Scholar 

  • Lankinen, P, and Riihimaa, A J. 1992. Weak circadian eclosion rhythmicity in Chymomyza costata (Diptera: Drosophilidae), and its independence of diapause type. J Insect Physiol, 38, 803–811.

    Article  Google Scholar 

  • Latorre, A, Hernández, C, Martínez, D, Castro, J A, Ramón, M, and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila subobscura. Heredity, 68, 15–24.

    Article  CAS  Google Scholar 

  • Pfriem, P. 1983. Latitudinal variation in wing size in Drosophila subobscura and its dependence on polygenes of chromosome O. Genetica, 61, 221–232.

    Article  Google Scholar 

  • Pfriem, P, and Sperlich, D. 1982. Wild chromosomes O of Drosophila subobscura from different geographic regions have different effects on viability. Genetica, 60, 49–59.

    Article  Google Scholar 

  • Pittendrigh, C S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z Pflanzenphysiol Bd, 54, 275–307.

    Google Scholar 

  • Pittendrigh, C S. 1967. Circadian systems, I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc Natl Acad Sci USA, 58, 1762–1767.

    Article  CAS  Google Scholar 

  • Pittendrigh, C S. 1981. Circadian organization and the photoperiodic phenomena. In: Follet, B. K. and Follet, D. E. (eds) Biological Clocks in Seasonal Reproductive Cycles, Wright, Bristol, pp. 1–35.

    Google Scholar 

  • Pittendrigh, C S, and Takamura, T. 1987. Temperature dependence and evolutionary adjustment of critical night length in insect photoperiodism. Proc Natl Acad Sci USA, 84, 7169–7173.

    Article  CAS  Google Scholar 

  • Pittendrigh, C S, and Takamura, T. 1989. Latitudinal clines in the properties of a circadian pacemaker. J Biol Rhythms, 4, 217–235.

    Article  CAS  Google Scholar 

  • Prevosti, A. 1955. Geographical variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harb Symp, 20, 294–299.

    Article  CAS  Google Scholar 

  • Prevosti, A. 1968. Efecto de la Cordillera pirenaica sobre la distribución geographica de las ordenaciones cromosómicas de Drosophila subobscura. Pirineos, 79–80, 221–228.

    Google Scholar 

  • Prevosti, A, Ribo, G, Serra, L, Aguade, M, Balaña, J, Monclus, M, and Mestres, F. 1988. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci USA, 85, 5597–5600.

    Article  CAS  Google Scholar 

  • Saunders, D S, Henrich, V C, and Gilbert, L I. 1989. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci USA, 86, 3748–3752.

    Article  CAS  Google Scholar 

  • Saura, A, Johansson, B, Eriksson, E, and Kohonen-Corish, M. 1990. Genetic load in northern populations of Drosophila subobscura. Hereditas, 112, 283–287.

    Article  CAS  Google Scholar 

  • Saura, A, Lokki, J, Lankinen, P, and Järvinen, O. 1973. Entsyymipolymorfismit populaatiogenetiikassa ja evoluutiotutkimuksessa. Luonnontutkija, 4–5, 101–111.

    Google Scholar 

  • Smith, P H. 1987. Naturally occurring arrhythmicity in eclosion and activity in Lucilia cuprina. Physiol Entomol, 12, 99–107.

    Article  CAS  Google Scholar 

  • Walter, T. 1990. Über den Nachweis von Drosophila-Arten während des Winters im seweizerischen Mittelland. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 63, 115–120.

    Google Scholar 

  • Winfree, A T. 1980. The Geometry of Biological Time Bio-mathematics, Vol. 8, Springer-Verlag, New York, 530 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, University of Oulu, Linnanmaa, Oulu, SF-90570, Finland

    P Lankinen

Authors
  1. P Lankinen
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankinen, P. North–south differences in circadian eclosion rhythm in European populations of Drosophila subobscura. Heredity 71, 210–218 (1993). https://doi.org/10.1038/hdy.1993.126

Download citation

  • Received: 18 January 1993

  • Issue date: 01 August 1993

  • DOI: https://doi.org/10.1038/hdy.1993.126

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • circadian rhythm
  • developmental time
  • Drosophila subobscura
  • latitudinal cline
  • photoperiodic diapause
  • rhythm mutant

This article is cited by

  • Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations

    • Sergio Hidalgo
    • Joanna C. Chiu

    Journal of Comparative Physiology A (2023)

  • Life-history traits of Drosophila melanogaster populations exhibiting early and late eclosion chronotypes

    • K. L. Nikhil
    • Karatgi Ratna
    • Vijay Kumar Sharma

    BMC Evolutionary Biology (2016)

  • Gene expression clines reveal local adaptation and associated trade-offs at a continental scale

    • Damiano Porcelli
    • Anja M. Westram
    • Rhonda R. Snook

    Scientific Reports (2016)

  • Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle

    • T Harano
    • T Miyatake

    Heredity (2010)

  • Genetic variation in locomotor activity rhythm among populations ofLeptopilina heterotoma (Hymenoptera: Eucoilidae), a larval parasitoid ofDrosophila species

    • Frédéric Fleury
    • Roland Allemand
    • Michel Boulétreau

    Behavior Genetics (1995)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited