Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Sex determination in the Hymenoptera: a review of models and evidence
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1993

Sex determination in the Hymenoptera: a review of models and evidence

  • James M Cook1 

Heredity volume 71, pages 421–435 (1993)Cite this article

  • 7512 Accesses

  • 348 Citations

  • 7 Altmetric

  • Metrics details

Abstract

The haploid males and diploid females of Hymenoptera have all chromosomes in the same proportions. This rules out most familiar sex-determining mechanisms, which rely on dosage differences at sex determination loci. Two types of model — genie balance and complementary sex determination (CSD) — have been invoked for Hymenoptera. Experimental studies provide no good evidence for genie balance models, which are contradicted by the detection of diploid males in 33 disparate species. Furthermore, recent advances have shown that sex determination in the best-studied diploid animals does not depend on genie balance, removing the original justification for hymenopteran genie balance models. Instead, several Hymenoptera have single-locus CSD. In this system, sex locus heterozyotes are female while homozygotes and hemizygotes are male. Single-locus CSD does not apply to several inbreeding species and this probably reflects selection against the regular production of diploid males, which are sterile. A multilocus CSD model, in which heterozygosity at any one of several sex loci leads to female development has also been proposed. To date, multilocus CSD has not been demonstrated but several biases against its detection must be considered. CSD can apply to thelytokous races as long as the cytogenetic mechanism permits retention of sex locus heterozygosity. However, some thelytokous races clearly do not have CSD. The distribution of species with and without CSD suggests that this form of sex determination may be ancestral in the Hymenoptera. However, phylogenetic analyses are hindered by the lack of data from several superfamilies and the fact that the internal phylogeny of the Hymenoptera remains controversial.

Similar content being viewed by others

Multiple forms of balancing selection maintain inversion polymorphism

Article Open access 17 July 2025

Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule

Article Open access 04 February 2021

Development and validation of sex-linked molecular markers for rapid and accurate identification of male and female Hippophae tibetana plants

Article Open access 20 August 2024

Article PDF

References

  • Askew, R R. 1984. The biology of gall wasps. In: Anantha-krishnan, T. N. (ed.) Biology of Gall Insects, Edward Arnold, London, pp. 223–271.

    Google Scholar 

  • Baker, B S, and Belotte, J M. 1983. Sex determination in Drosophila melanogaster. Ann Rev Genet, 17, 345–393.

    CAS  PubMed  Google Scholar 

  • Biemont, C, and Bouletreau, M. 1980. Hybridisation and inbreeding effects on genome coadaptation in a haplodiploid hymenopteran: Cothonapsis boulardi (Eucoilidae). Experientia, 36, 45–47.

    Google Scholar 

  • Borgia, G. 1980. Evolution of Haplodiploidy: Models for Inbred and Outbred Systems. Theor Pop Biol, 17, 103–128.

    CAS  Google Scholar 

  • Bostian, C H. 1934. Biparental males and biparental ratios in Habrobracon. Biol Bull, 66, 166–181.

    Google Scholar 

  • Bridges, C B. 1916. Non-disjunction as proof of the chromosome theory of heredity. Genetics, 1, 1–52 and 107–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges, C B. 1921. Triploid intersexes in Drosophila. Science, 54, 252–254.

    CAS  PubMed  Google Scholar 

  • Bridges, C B. 1922. The origin of variations in sexual and sex-limited characters. Am Nat, 56, 51–63.

    Google Scholar 

  • Bridges, C B. 1939. Cytological and genetic basis of sex. In: Allen, C. et al. (eds.) Sex and Internal Secretions, 2nd edn, Williams & Wilkins Co., Baltimore, pp. 15–63.

    Google Scholar 

  • Bull, J J. 1979. An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity, 43, 361–381.

    Google Scholar 

  • Bull, J J. 1981. Coevolution of haplodiploidy and sex determination in the Hymenoptera. Evolution, 35, 568–580.

    CAS  PubMed  Google Scholar 

  • Bull, J J. 1983. Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Camargo, C A. 1979. Sex determination in bees. XI. Production of diploid males and sex determination in Melipona quadrifasciata (Hymenoptera, Apidae). J Apic Res, 18, 77–84.

    Google Scholar 

  • Chaud-Netto, J. 1975. Sex determination in bees II. Additivity of maleness genes in Apis mellifera. Genetics, 79, 213–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, A M, and Rubin, M A. 1961. The modification by X-radiation of the life span of haploids and diploids of the wasp, Habrobracon sp. Radiation Res, 15, 244–253.

    CAS  PubMed  Google Scholar 

  • Cline, T W. 1988. Evidence that sisterless-a and sisterless-b are two of several discrete ‘numerator elements’ of the X/A sex determination signal in Drosophila that switch sxl between two alternative stable expression states. Genetics, 119, 829–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cline, T W. 1989. The affairs of daughterless and the promiscuity of developmental regulators. Cell, 59, 231–234.

    CAS  PubMed  Google Scholar 

  • Comrie, L C. 1939. Biological and cytological observations on tenthredinid parthenogenesis. Nature, 142, 877.

    Google Scholar 

  • Cook, J M. 1993. Empirical tests of sex determination in Goniozus nephantidis (Hymenoptera: Bethylidae). Heredity, 71, 130–137.

    Google Scholar 

  • Cornell, H V. 1988. Solitary and gregarious brooding, sex ratios and the incidence of thelytoky in the parasitic Hymenoptera. Am Midland Nat, 119, 63–70.

    Google Scholar 

  • Crozier, R H. 1971. Heterozygosity and sex determination in haplodiploidy. Am Nat, 105, 399–412.

    Google Scholar 

  • Crozier, R H. 1975. Hymenoptera. In: John, B. (ed.) Animal Cytogenetics 3: Insecta 7. Gebr., Borntraeger, Berlin, pp. 1–95.

    Google Scholar 

  • Crozier, R H. 1977. Evolutionary genetics of the Hymenoptera. Annu Rev Entomol, 22, 263–288.

    Google Scholar 

  • Cunha, A B, and Kerr, W E. 1957. A genetical theory to explain sex determination by arrhenotokous parthenogenesis. Forma et Functio 1, 33–36.

    Google Scholar 

  • Derr, J N, Davis, S K, Woolley, J B, and Wharton, R A. 1992. Variation and phylogenetic utlity of the large ribosomal subunit of mitochondrial DNA from the insect order Hymenoptera. Mol Phylog Evol, 1, 136–147.

    CAS  Google Scholar 

  • Dozorceva, R L. 1936. Sex-limited heredity in Pteromalus puparum. CR (Doklady) de l'Academie des Sciences de l'URSS, III (XII), 3, 335–338. Cited in Whiting (1940).

    Google Scholar 

  • Drescher, W, and Rothenbuhler, W C. 1964. Sex determination in the honeybee. J Hered, 55, 91–96.

    Google Scholar 

  • Dreyfus, A, and Breuer, M E. 1944. Chromosomes and sex determination in the parasitic hymenopteran Telenomus fariai Lima. Genetics, 29, 75–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabritius, K. 1984. Untersuchungen uber eine Inzucht von Muscidifurax raptor unter Labordebingungen. Entomol Genet, 9, 237–241.

    Google Scholar 

  • Fischer, K. 1987. Karyotypuntersuchungen an selbstandigen und sozialparatischen ameisen des tribus Leptothoracini (Hymenoptera: Formicidae) im hinblik auf ihre verwandt-schaftesbeziehungen. Dissertation FBTH, Darmstadt.

    Google Scholar 

  • Friedler, C, and Ray, O T. 1951. Androgenesis in the wasp Mormoniella. Anat Rec, 111, 475.

    Google Scholar 

  • Garófalo, C A. 1973. Occurrence of diploid drones in a Neotropical bumblebee. Experientia, 19, 726–727.

    Google Scholar 

  • Garófalo, C A, and Kerr, W E. 1975. Sex determination in bees I. Balance between maleness and femaleness genes in Bombus atratus Franklin. Genetica, 45, 203–209.

    Google Scholar 

  • Gauld, I, and Bolton, B. 1988. The Hymenoptera. Oxford University Press & British Museum (Natural History), Oxford & London.

    Google Scholar 

  • Grosch, D S. 1945. The relation of cell size and organ size to mortality in Habrobracon. Growth, 9, 1–17.

    Google Scholar 

  • Hamilton, W D. 1967. Extraordinary sex ratios. Science, 156, 477–488.

    CAS  PubMed  Google Scholar 

  • Hardy, I C W. 1992. Non-binomial sex allocation and brood sex ratios in the parasitoid Hymenoptera. Oikos, 65, 143–158.

    Google Scholar 

  • Hartl, D L, and Brown, S W. 1970. The origin of male haploid genetic systems and their expected sex ratio. Theor Pop Biol, 1, 165–190.

    CAS  Google Scholar 

  • Hedderwick, M P, El Agoze, M, Garaud, P, and Periquet, G. 1985. Mise en evidence de males heterozygotes chez l'hymenoptère Diadromus pulchellus. Genet Sel Evolut, 17, 303–310.

    CAS  Google Scholar 

  • Hey, J, and Gargiulo, M K. 1985. Sex-ratio changes in Leptopilina heterotoma in response to inbreeding. J Hered, 76, 209–211.

    Google Scholar 

  • Hodgkin, J. 1990. Sex determination compared in Drosophila and Caenorhabditis. Nature, 344, 721–728.

    CAS  PubMed  Google Scholar 

  • Hoshiba, H, Okada, I, and Kusanagi, A. 1981. The diploid drone of Apis cerana japonica and its chromosomes. J Apic Res, 20, 143–147.

    Google Scholar 

  • Hung, A C F. 1984. Tandem gene duplication and fixed heterozygosity in the parasitic wasp Trichogramma marylandense. Experientia, 41, 508–509.

    Google Scholar 

  • Hung, A C E, Imai, H T, and Kubota, M. 1972. The chromosomes of nine ant species from Taiwan, Republic of China. Annal Entomol Soc Am, 65, 1023–1025.

    Google Scholar 

  • Hung, A C F, and Vinson, S B. 1976. Biochemical evidence for queen monogamy and sterile male diploidy in the fire ant, Solenopsis invicta. Isozyme Bull, 9, 42.

    Google Scholar 

  • Hung, A C F, Vinson, S B, and Summerlin, J W. 1974. Male sterility in the imported red fire ant, Solenopsis invicta. Annal Entomol Soc Am, 67, 909–912.

    Google Scholar 

  • Imai, H T, and Yoshida, T H. 1968. Polyploid cells observed in male and queen ants of Aphaenogaster osimensis. Ann Rep Natl Inst Genet (Japan), 16, 54.

    Google Scholar 

  • Hunter, M S, Nur, U, and Werren, J H. 1993. Origin of males by genome loss in an autoparasitoid wasp. Heredity, 70, 162–171.

    Google Scholar 

  • Kerr, W E. 1974a. Advances in cytology and genetics of bees. Annu Rev Entomol, 19, 253–268.

    Google Scholar 

  • Kerr, W E. 1974b. Sex determination in bees. III. Caste determination and genetic control in Melipona. Insectes Soc, 21, 357–367.

    Google Scholar 

  • Kerr, W E. 1975. Evolution of the population structure in bees. Genetics, 79, 73–84.

    Google Scholar 

  • Kerr, W E. 1987. Sex determination in bees. XXI. Number of XO-heteroalleles in a natural population of Melipona compressipes fasciculata (Apidae). Insectes Soc, 34, 274–279.

    Google Scholar 

  • Kerr, W E, and Neilsen, R A. 1967. Sex determination in bees (Apiinae). J Apic Res, 6, 3–9.

    Google Scholar 

  • Königsmann, E. 1977. Das phylogenetische system de Hymenoptera. Teil 2: ‘Symphyta’. Dtsch Entomol Z, 24, 1–40.

    Google Scholar 

  • Königsmann, E. 1978. Das phylogenetische system der Hymenoptera. Teil 3: ‘Terebrantes’ (Unterordnung Apocrita). Dtsch Entomol Z, 25, 1–55.

    Google Scholar 

  • Kukuk, P F, and May, B. 1990. Diploid males in a primitively eusocial bee, Lasioglossum (Dialictus) zephyrum (Hymenoptera: Halictidae). Evolution, 44, 1522–1528.

    PubMed  Google Scholar 

  • Laidlaw, H H, Gomes, F P, and Kerr, W E. 1956. Estimation of the number of lethal alleles in a panmictic population of Apis mellifera L. Genetics, 41, 179–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legner, E E. 1979. Prolonged culture and inbreeding effects on reproductive rates of two pteromalid parasites of muscoid flies. Ann Entomol Soc Am, 72, 114–118.

    Google Scholar 

  • Legner, E F. 1985. Effects of scheduled high temperature on male production in thelytokous Muscidifurax uniraptor (Hymenoptera: Pteromalidae). Can Entomol, 117, 383–389.

    Google Scholar 

  • Loiselle, R, Francoeur, A, Fischer, K, and Buschinger, A. 1990. Variations and taxonomic significance of the chromosome number in the Nearctic species of the genus Leptothorax (S.S.) (Formicidae: Hymenoptera). Caryologia, 43, 321–334.

    Google Scholar 

  • Luck, R, Stouthamer, R, and Nunney, L E. 1992. Sex determination and sex ratio patterns in parasitic Hymenoptera. In: Wrensch, D. L.&Ebbert, M. A. (eds) Evolution and Diversity of Sex Ratios in Haplodiploid Insects and Mites, pp, 442–476.

    Google Scholar 

  • Macbride, D H. 1946. Failure of sperm of Habrobracon diploid males to penetrate the eggs. Genetics, 31, 224.

    CAS  PubMed  Google Scholar 

  • Mackensen, O. 1951. Viability and sex determination in the honey bee (Apis mellifera). Genetics, 36, 500–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madi, J A, and Herman, R K. 1979. Polyploids and sex determination in Caenorhabditis elegans. Genetics, 93, 393–402.

    Google Scholar 

  • Moritz, R F A. 1986. Genetics of bees other than Apis melliera. In: Rinderer, T. E. (ed.) Bee Genetics and Breeding, Academic Press, Orlando, Florida, pp. 121–154.

    Google Scholar 

  • Mueller, U. 1993. DNA fingerprinting reveals mating frequency, diploid males, worker reproduction and intraspecific nest parasitism in a primitively eusocial bee. Chapter 4 of Haplodiploidy and the evolution of faculative sex ratios in a primitively eusocial bee, Ph. D. Thesis, Cornell University.

    Google Scholar 

  • Muller, H J. 1932. Some genetic aspects of sex. Am Nat, 66, 118–138.

    Google Scholar 

  • Naito, T, and Suzuki, H. 1991. Sex determination in the sawfly Athalia rosae ruficornis: occurrence of triploid males. J Heredity, 82, 101–104.

    Google Scholar 

  • Nur, U, Werren, J H, Eickbush, D G, Burke, W D, and Eickbush, T H. 1988. A “selfish” B chromosome that enhances its transmission by eliminating the paternal genome. Science, 240, 512–514.

    CAS  PubMed  Google Scholar 

  • Ohno, S. 1979. Major Sex-Determining Genes. Springer-Verlag, Berlin.

    Google Scholar 

  • Parker, L, and Owen, R E. 1990. Allozyme variation, linkage disequilibrium and diploid male production of a primitively social bee Augochlorella striata (Hymenoptera; Halictidae). Heredity, 65, 241–248.

    Google Scholar 

  • Page, R E, and Metcalf, R A. 1982. Multiple mating, sperm utilization and social evoluition. Am Nat, 119, 263–281.

    Google Scholar 

  • Pamilo, P, and Rosengren, R. 1984. Evolution of nesting strategies in ants. Genetic evidence from different population types of Formica ants. Biol J Linn Soc, 21, 331–348.

    Google Scholar 

  • Peacock, A D, and Sanderson, A R. 1939. The cytology of the thelytokous sawfly Thrinax macula. Trans Roy Soc Edinb, 59, 647.

    Google Scholar 

  • Pearson, B. 1983. Hybridisation between the ant species Lasius niger and Lasius alienus: The genetic evidence. Insectes Soc, 30, 402–411.

    Google Scholar 

  • Periquet, G, Hedderwick, M P, El Agoze, M, and Poirie, M. 1993. Sex determination in the Hymenoptera Diadromus pulchellus (Ichneumonidae): validation of the one-locus multi-allele model. Heredity, 70, 420–427.

    Google Scholar 

  • Petters, R M, and Mettus, R V. 1980. Decreased diploid viability in the parasitoid wasp, Bracon hebetor. J Hered, 71, 353–356.

    Google Scholar 

  • Queller, D C, Strassmann, J E, and Hughes, C R. 1992. Genetic relatedness and population structure in primitively eusocial wasps in the genus Mischocyttarus. J Hymenoptera Res, 1, 81–89.

    Google Scholar 

  • Rasnitsyn, A P. 1980. Origin and evolution of Hymenoptera. Tr Paleontol Inst, 174, 1–190.

    Google Scholar 

  • Rasnitsyn, A P. 1988. An outline of the evolution of hymenopterous insects. Orient Insects, 22, 115–145.

    Google Scholar 

  • Ratnieks, F L W. 1990. The evolution of polyandry by queens in social Hymenoptera: the significance of the timing of removal of diploid males. Behav Ecol Sociobiol, 26, 343–348.

    Google Scholar 

  • Rojas-Rousse, D, Eslami, J, and Periquet, G. 1988. Reproductive strategy of Dinarmus vagabundus: real sex ratio, sequence of emitting diploid and haploid eggs and effects of inbreeding on progeny. J Appl Entomol, 106, 276–285.

    Google Scholar 

  • Ross, K G, and Fletcher, D J C. 1986. Diploid male production — a significant colony mortality factor in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol, 19, 283–291.

    Google Scholar 

  • Rössler, Y, and Debach, P. 1973. Genetic variability in the thelytokous form of Aphytis mytilaspidis (Le Baron) (Hymenoptera: Aphelinidae). Hilgardia, 42, 149–175.

    Google Scholar 

  • Rothenbuhler, W C. 1957. Diploid male tissue as new evidence on sex determination in honeybees. J Hered, 48, 160–168.

    Google Scholar 

  • Schmieder, R G. 1938. The sex ratio in Melittobia chalybii Ashmead, gametogenesis and cleavage in females and haploid males (Hymenoptera: Chalcidoidea). Biol Bull, 74, 256–266.

    Google Scholar 

  • Schmieder, R G, and Whiting, P W. 1947. Reproductive economy in the chalcidoid wasp Melittobia. Genetics, 32, 29–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner, S W. 1982. Maternally inherited sex ratio in the parasitic wasp Nasonia vitripennis. Science, 215, 1133–1134.

    CAS  PubMed  Google Scholar 

  • Skinner, S W, and Werren, J H. 1980. The genetics of sex determination in Nasonia vitripennis. Genetics, 94, s98.

    Google Scholar 

  • Slobodchikoff, C N, and Daly, H V. 1971. Systematic and evolutional implications of parthenogenesis in the Hymenoptera. Am Zool, 11, 273–282.

    Google Scholar 

  • Smith, S G. 1941. A new form of the spruce sawfly identified by means of its cytology and parthenogenesis. Sci Agric, 21, 245–305.

    Google Scholar 

  • Smith, S G, and Wallace, D R. 1971. Allelic sex determination in a lower hymenopteran, Neodiprion nigroscutum Midd. Can J Genet Cytol, 13, 617–621.

    Google Scholar 

  • Smith, S G, and Vikki, N. 1978. Coleoptera. In: John, B. (ed.) Animal Cytogenetics 3: Insecta 7. Gebr., Borntraeger, Berlin.

    Google Scholar 

  • Snell, G D. 1935. The determination of sex in Habrobracon. Proc Natl Acad Sci USA, 21, 446–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speicher, B R, and Speicher, K G. 1940. The occurrence of diploid males in Habrobracon brevicornis. Am Nat, 74, 379–382.

    Google Scholar 

  • Speicher, B R, Speicher, K G, and Roberts, F L. 1965. Genetic segregation in the unisexual wasp Devorgilla. Genetics, 52, 1035–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner, W W M, and Teig, D A. 1989. Microplitis croceipes: genetic characterisation and developing insecticide resistant biotypes. Southwest Entomol, 12, 71–87.

    Google Scholar 

  • Stille, B, and Dävring, L. 1980. Meiosis and reproductive strategies in the parthenogenetic gall wasp Diplolepis rosea. Hereditas, 92, 353–362.

    Google Scholar 

  • Stouthamer, R, Luck, R F, and Hamilton, W D. 1990a. Anti-biotics cause parthenogenetic Trichogramma (Hymenoptera: Trichogrammatidae) to revert to sex. Proc Natl Acad Sci, USA, 87, 2424–2427.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stouthamer, R, Pinto, J D, Platner, G R, and Luck, R F. 1990b. Taxonomic status of thelytokous species of Trichogramma (Hymenoptera: Trichogrammatidae). Ann Entomol Soc Am, 83, 475–481.

    Google Scholar 

  • Stouthamer, R, Luck, R F, and Werren, J H. 1992. Genetics of sex determination and the improvement of biological control using parasitoids. Ann Entomol Soc Am, 21, 427–435.

    Google Scholar 

  • Stouthamer, R, Breeuer, J A J, Luck, R F, and Werren, J H. 1993. Molecular identification of parthenogenesis associated microorganisms. Nature, in press.

  • Sturtevant, A H. 1921. Genetical studies on Drosophila simulans. III. Autosomal genes. General discussion. Genetics, 6, 179–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suomaleinen, E, Saura, A, and Lokki, J. 1987. Cytology and Evolution in Parthenogenesis, CRC, Boca Raton, Florida.

    Google Scholar 

  • Tarelho, Z F S. 1973. Contribuicae ao estudo citogenetico dos Apoidea. Ph. D. Thesis, University of Sao Paulo, Brasil.

    Google Scholar 

  • Torvik-Greb, M M. 1935. The chromosomes of Habrobracon. Biol Bull, 68, 125–34.

    Google Scholar 

  • Tucker, K W. 1958. Apomictic parthenogenesis in the honey bee. Genetics, 43, 299–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unruh, T R, Gonzalez, D, and Gordh, G. 1984. Electrophoretic studies on parasitic Hymenoptera and implications for biological control. Proc XVIIth Int Congr Entomol, 705.

  • Verma, S, and Rutner, F. 1981. Cytologische analyse der thelytoken parthenogenesis bei der kapbiene (Apis mellifera capensis Escholtz). Apidologie, 12, 88–89.

    Google Scholar 

  • Ward, P S. 1980. Genetic variation and the population differentiation of the Rhytidoponera impressa group, a species complex of ponerine ants. Evolution, 34, 1060–1076.

    CAS  PubMed  Google Scholar 

  • Werren, J H. 1987. Labile sex ratios in bees and wasps. Bioscience, 37, 498–506.

    Google Scholar 

  • Werren, J H, Skinner, S W, and Huger, A M. 1986. Male-killing bacteria in a parasitic wasp. Science, 231, 990–992.

    CAS  PubMed  Google Scholar 

  • White, M J D. 1973. Animal Cytology and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Whiting, A R. 1961. Genetics of Habrobracon. Adv Genet, 10, 333–406.

    Google Scholar 

  • Whiting, A R. 1976. The biology of the parasitic wasp Mormoniella vitripennis. Q Rev Biol, 43, 333–406.

    Google Scholar 

  • Whiting, P W. 1939. Sex determination and reproductive economy in Habrobracon. Genetics, 24, 110–111.

    Google Scholar 

  • Whiting, P W. 1940. Sex-linkage in Pteromalus. Am Nat, 64, 377–379.

    Google Scholar 

  • Whiting, P W. 1943. Multiple alleles in complementary sex determination of Habrobracon. Genetics, 28, 365–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting, P W. 1945. The evolution of male haploidy. Q Rev Biol, 20, 231–260.

    CAS  PubMed  Google Scholar 

  • Whiting, P W. 1947. Some experiments with Melittobia and other wasps. J Hered, 38, 11–20.

    CAS  PubMed  Google Scholar 

  • Whiting, P W. 1960. Polyploidy in Mormoniella. Genetics, 45, 949–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting, P W, Greb, R J, and Speicher, B R. 1934. A new type of sex intergrade. Biol Bull, 66, 152–165.

    Google Scholar 

  • Whiting, P W, and Whiting, A R. 1925. Diploid males from fertilised eggs in Hymenoptera. Science, 62, 437–438.

    CAS  PubMed  Google Scholar 

  • Woyke, J. 1962. The hatchability of ‘lethal’ eggs in a two sex allele fraternity of the honeybee. J Apic Res, 4, 6–13.

    Google Scholar 

  • Woyke, J. 1963. What happens to the diploid drone larvae in a honeybee colony. J Apic Res, 2, 73–75.

    Google Scholar 

  • Woyke, J. 1965. Genetic proof of the origin of diploid drones from fertilised eggs of the honeybee. J Apic Res, 4, 7–11.

    Google Scholar 

  • Woyke, J. 1974. Genie balance, heterozygosity and inheritance of testis size in diploid drone honeybees. J Apic Res, 13, 77–85.

    Google Scholar 

  • Woyke, J. 1979. Sex determination of Apis cerana India. J Apic Res, 18, 122–127.

    Google Scholar 

  • Woyke, J. 1980. Genetic background of sexuality in the diploid drone honeybee. J Apic Res, 19, 89–95.

    Google Scholar 

  • Woyke, J. 1986. Sex Determination. In: Rinderer, T. E. (ed.) Bee Genetics and Breeding. Academic Press, Orlando, Florida.

    Google Scholar 

  • Woyke, J, and Krol-Paluch, W. 1985. Changes in tissue polyploidization during development of worker, queen, haploid and diploid drone honeybees. J Apic Res, 24, 14–224.

    Google Scholar 

  • Zchori-Fein, E, Roush, R T, and Hunter, M S. 1992. Female production induced by anti-biotic treatment in Encarsia formosa. Experientia, 48, 102–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics & Human Variation, La Trobe University, Bundoora, 3083, Victoria, Australia

    James M Cook

Authors
  1. James M Cook
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, J. Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71, 421–435 (1993). https://doi.org/10.1038/hdy.1993.157

Download citation

  • Received: 10 March 1993

  • Issue date: 01 October 1993

  • DOI: https://doi.org/10.1038/hdy.1993.157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • arrhenotoky
  • diploid male
  • haplodiploidy
  • Hymenoptera
  • sex determination
  • thelytoky

This article is cited by

  • Unveiling the world of bee microRNAs: computational identification and characterization of pathway genes, conserved microRNAs, and their targets

    • Carlos Bruno de Araujo
    • Paulo Vinícius Rocha Pereira
    • Matheus de Souza Gomes

    International Journal of Tropical Insect Science (2024)

  • Body size and age of drone honeybees (Apis mellifera) affect the structure and characteristics of mating congregations via dispersal

    • Shinya Hayashi
    • Toshiyuki Satoh

    Apidologie (2023)

  • Simple method for combining multiple-loci marker genotypes to estimate diploid male proportion, with an application to a threatened bumble bee population in Japan

    • T. Nomura
    • Y. Taniguchi

    Insectes Sociaux (2023)

  • Sexual dimorphism and sex-biased gene expression in an egg parasitoid species, Anastatus disparis

    • Peng-Cheng Liu
    • De-Jun Hao
    • Jian-Rong Wei

    BMC Genomics (2020)

  • Effects of temperature and superparasitism on quality and characteristics of thelytokous Wolbachia-infected Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) during mass rearing

    • Jin-Cheng Zhou
    • Yuan-Yuan Li
    • Hui Dong

    Scientific Reports (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited