Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
(CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout)
Download PDF
Download PDF
  • Original Article
  • Published: 01 November 1993

(CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout)

  • Arnaud Estoup1,
  • Pablo Presa1,
  • Francine Krieg1,
  • Daniel Vaiman2 &
  • …
  • Rene Guyomard1 

Heredity volume 71, pages 488–496 (1993)Cite this article

  • 2805 Accesses

  • 339 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Thirteen (GT)n and four (CT)n microsatellite loci (n = 10 or more and n = 20 or more, respectively) have been isolated from a partial genomic library of brown trout and sequenced. On average, a (GT)n repeat sequence occurs approximately every 23 kb and a (CT)n repeat sequence every 76 kb in brown trout genome. Primers for DNA amplifications using the polymerase chain reaction (PCR) were synthesized for three single locus microsatellites. Mendelian inheritance of the observed polymorphisms was confirmed in full-sib families. Four brown trout populations (10 unrelated individuals per population) were screened for polymorphism with these three microsatellite loci. The total number of alleles detected in the four populations is five at one locus, six at the other two microsatellite loci and is three, on average, per population. Heterozygosities range from 0.18 to 0.74. The largest differences in allelic frequencies occurred between the Mediterranean and the Atlantic populations: this result is congruent with previous allozymic data. The gene-centromere distances of the three microsatellite markers were determined on gynogenetic lines: post-reduction rates range from 0.17 to 0.60. For all the three microsatellite loci, the primers designed from brown trout sequences can be used in another closely related species of salmonid, the rainbow trout (Oncorhynchus mykiss). This last aspect supports the view that microsatellite markers may have wide application in genetic studies in salmonid species and fishes in general.

Similar content being viewed by others

Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

Article Open access 03 December 2021

Microsatellite markers reveal genetic diversity and population structure of Portunus trituberculatus in the Bohai Sea, China

Article Open access 29 May 2023

Genotyping-in-Thousands by sequencing of archival fish scales reveals maintenance of genetic variation following a severe demographic contraction in kokanee salmon

Article Open access 23 November 2021

Article PDF

References

  • Allendorf, F W, Seeb, J E, Knudsen, K L, Thorgaard, G H, and Leary, R F. 1986. Gene-centromere mapping of 25 loci in rainbow trout. Heredity, 77, 307–312.

    Article  Google Scholar 

  • Atkin, N B, Mattinson, G, Becak, W, and Ohno, S. 1965. The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma, 17, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann, J S, and Weber, J L. 1992. Survey of human and rat microsatellites. Genomics, 12, 627–631.

    Article  CAS  Google Scholar 

  • Bernatchez, L, Guyomard, R, and Bonhomme, F. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol, 1, 161–173.

    Article  CAS  PubMed  Google Scholar 

  • Botstein, D, White, R L, Skolnick, M, and Davis, R W. 1980. Construction of a genetic linkage map in man using restriction fragments length polymorphism. Am J Hum Genet, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Britten, R J, and Khone, D. 1968. Repeated sequences in DNA. Science, 161, 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, A, Hammond, H A, Jin, L, Caskey, C T, and Chakraborty, R. 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics, 12, 241–253.

    Article  CAS  PubMed  Google Scholar 

  • Ely, J, Deka, R, Chakraborty, R, and Ferrell, R E. 1992. Comparison of five tandem repeat loci between human and chimpanzees. Genomics, 14, 692–698.

    Article  CAS  PubMed  Google Scholar 

  • Epplen, J T, Ammer, H, Epplen, C, Kammerbauer, C, Mitreiter, R, Roewer, L, Schwaiger, W, Steimle, V, Zischler, H, Albert, E, Andreas, A, Beyermann, B, Meyer, W, Beutkamp, J, Nanda, I, Schmid, M, Nürnberg, P, Pena, S D, Pöche, H, Sprecher, W, Schartl, M, Weising, K, and Yassouridis, A. 1991. Oligonucleotide fingerprinting using simple repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes. In: Burke, T., Dolf, G., Jeffreys, A. J. and Wolff, R. (eds), DNA Fingerprinting Approaches and Applications. Basel, Birkhazüser, pp. 50–69.

    Chapter  Google Scholar 

  • Ferguson, A. 1989. Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshwater Biol, 21, 35–46.

    Article  Google Scholar 

  • Guyomard, R. 1984. High level of residual heterozygosity in gynogenetic rainbow trout, Salmo gairdneri Richardson. Theor Appl Genet, 63, 201–205.

    Google Scholar 

  • Guyomard, R. 1986. Gene segregation in gynogenetic brown trout (Salmo trutta L.): systematically high frequencies of post-reduction. Génet Sét Evol, 18, 385–392.

    Article  CAS  Google Scholar 

  • Guyomard, R. 1989. Diversité génétique de la truite commune. Bull Fr Pêche Piscic, 314, 118–135.

    Article  Google Scholar 

  • Guyomard, R, and Krieg, F. 1983. Electrophoretic variation in six populations of brown trout (Salmo trutta L.). Can J Genet Cytol, 25, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Hamada, H, Petrino, M G, and Kakunaga, T. 1982. A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci USA, 79, 6465–6469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazan, J, Dubay, C, Pankowiak, M P, Becuwe, N, and Weissenbach, J. 1992. A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics, 12, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Hearne, C M, Ghosh, S, and Todd, J A. 1992. Microsatellite for linkage analysis of genetic traits. TIG, 8, 288–294.

    Article  CAS  PubMed  Google Scholar 

  • Jarman, A P, and Wells, R A. 1989. Hypervariable minisatellites: recombinators or innocent bystanders. TIG, 5, 11, 367–371.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A J, Royle, N J, Wilson, V, and Wong, Z. 1988. Spontaneous mutation rates to new alleles at tandem-repetitive hypervariable loci in human DNA. Nature, 322, 278–281.

    Article  Google Scholar 

  • Jeffreys, A J, Wilson, V, and Thein, S L. 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature (Lond), 314, 67–73.

    Article  CAS  Google Scholar 

  • Karl, S A, and Avise, J C. 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, 256, 100–102.

    Article  CAS  PubMed  Google Scholar 

  • Karl, S A, Bowen, B W, and Avise, J C. 1992. Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci. Genomics, 131, 163–173.

    CAS  Google Scholar 

  • Krieg, F, and Guyomard, R. 1985. Population genetics of french brown trout (Salmo trutta L.): large geographical differentiation of wild populations and high similarity of domesticated stocks. Génét Sél Evol, 17, 225–242.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution, North-Holland Pub., Amsterdam.

    Google Scholar 

  • Quillet, E, Foisil, L, and Chevassus, B, Chourrout, D, and Liu, F G. 1991. Production of all-triploid and all-female brown trout for aquaculture. Aquat Liv Resour, 4, 27–32.

    Article  Google Scholar 

  • Rassmann, K, Schlötterer, C, and Tautz, D. 1991. Isolation of simple-sequence loci for use in polymerase chain reaction-base DNA fingerprinting. Electrophoresis, 12, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Ryman, N. 1983. Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture, 33, 1–21.

    Article  Google Scholar 

  • Sambrook, J, Fritsch, E F, and Maniatis, T. (eds). 1989. Molecular cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F, Nicklen, S, and Coulson, A R. 1977. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA, 77, 5463–5467.

    Article  Google Scholar 

  • Seeb, J E, and Seeb, L W. 1986. Gene mapping of isozyme loci in chum salmon. J Hered, 77, 399–402.

    Article  CAS  PubMed  Google Scholar 

  • Stallings, R L, Ford, A F, and Nelson, D, Torney, D C, Hildebrand, C E, and Moyzis, R K. 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics, 10, 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Taggart, J B, and Fergusson, A. 1991. Hypervariable mini-satellite DNA single locus probes for the Atlantic salmon, Salmo salar L. J Fish Biol, 37, 991–993.

    Article  Google Scholar 

  • Tautz, D. 1989. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acids Res, 16, 6463–6471.

    Article  Google Scholar 

  • Thorgaard, G H, Allendorf, F W, and Knudsen, K L. 1983. Gene centromere mapping in rainbow trout: high interference over long map distance. Genetics, 103, 771–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, J L. 1990. Informativeness of human (dC-dA)n. (dG-dT )n polymorphisms. Genomics, 7, 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Weber, J L, and May, P E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 44, 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wintero, A K, Fredholm, M, and Thomsen, P D. 1992. Variable (dG-dT)n. (dC-dA)n sequences in the porcine genome. Genomics, 12, 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A K, Yee, H A, Van De Sande, J H, and Rattner, J B. 1990. Distribution of CT-rich tracts inversed in vertebrate chromosomes. Chromosoma (Berlin), 99, 344–351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Génétique des Poissons, CRJ-INRA, Jouy-en-Josas, F 78350, France

    Arnaud Estoup, Pablo Presa, Francine Krieg & Rene Guyomard

  2. Laboratoire de Génétique Biochimique, CRJ-INRA, Jouy-en-Josas, F 78350, France

    Daniel Vaiman

Authors
  1. Arnaud Estoup
    View author publications

    Search author on:PubMed Google Scholar

  2. Pablo Presa
    View author publications

    Search author on:PubMed Google Scholar

  3. Francine Krieg
    View author publications

    Search author on:PubMed Google Scholar

  4. Daniel Vaiman
    View author publications

    Search author on:PubMed Google Scholar

  5. Rene Guyomard
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estoup, A., Presa, P., Krieg, F. et al. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71, 488–496 (1993). https://doi.org/10.1038/hdy.1993.167

Download citation

  • Received: 19 February 1993

  • Issue date: 01 November 1993

  • DOI: https://doi.org/10.1038/hdy.1993.167

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • brown trout
  • gene-centromere distances
  • interspecific priming
  • intraspecific genetic variation
  • microsatellite markers
  • S. trutta

This article is cited by

  • Changes in the spatio-temporal genetic structure of Baltic sea trout (Salmo trutta L.) over two decades: direct and indirect effects of stocking

    • Oksana Burimski
    • Anti Vasemägi
    • Riho Gross

    Conservation Genetics (2024)

  • Microsatellite marker development and population genetic analysis revealed high connectivity between populations of a periwinkle Littoraria sinensis (Philippi, 1847)

    • Mengyu Li
    • Yuqiang Li
    • Jinxian Liu

    Journal of Oceanology and Limnology (2022)

  • Genetic relationships between sympatric and allopatric Coregonus ciscoes in North and Central Europe

    • Thomas Mehner
    • Stefan Palm
    • Jörg Freyhof

    BMC Ecology and Evolution (2021)

  • Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

    • Rafał Bernaś
    • Anna Wąs-Barcz
    • Patrick Berrebi

    Scientific Reports (2021)

  • STRs: Ancient Architectures of the Genome beyond the Sequence

    • Jalal Gharesouran
    • Hassan Hosseinzadeh
    • Maryam Rezazadeh

    Journal of Molecular Neuroscience (2021)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited