Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Period-homologous sequence polymorphisms in subterranean mammals of the Spalax ehrenbergi superspecies in Israel
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1993

Period-homologous sequence polymorphisms in subterranean mammals of the Spalax ehrenbergi superspecies in Israel

  • R Ben-Shlomo1,
  • H-S Shin2 nAff3 &
  • E Nevo1 

Heredity volume 70, pages 111–121 (1993)Cite this article

  • 506 Accesses

  • 6 Citations

  • Metrics details

Abstract

Restriction fragment length polymorphism (RFLPs) of the mouse period-homologous sequence were studied in 13 populations of the four chromosomal species (2n = 52, 54, 58 and 60) of the mole rat, Spalax ehrenbergi superspecies in Israel. The period locus of Drosophila melanogaster is implicated in controlling the circadian rhythm as well as the male courtship song rhythm. Multiple DNA homologies exist in the mole rat and correspond to more than 10 loci. The level of polymorphism is very high, with a large number of alleles per locus, increasing from the northern to the southern species along a gradient of increasing aridity. Variation was also found in an isolated desert population, with a unique fragment specific to this population. Fragment variation allows distinction between chromosomal species, and confirms earlier evidence that gene flow does not occur between them. A correlation was found between some allelic fragments and the number of apparent harmonics of the courtship calls. This finding suggests an interesting testable hypothesis that the existence of a locus (homology) is responsible for the courtship call parameters.

Similar content being viewed by others

Human molecular evolutionary rate, time dependency and transient polymorphism effects viewed through ancient and modern mitochondrial DNA genomes

Article Open access 03 March 2021

Y chromosome-linked variation affects locomotor activity in male Drosophila melanogaster and is robust to differences in thermal environment

Article Open access 13 March 2023

Multiple mechanisms drive genomic adaptation to extreme O2 levels in Drosophila melanogaster

Article Open access 12 February 2021

Article PDF

References

  • Barton, N H, and Charlesworth, B. 1984. Genetic revolutions, founder effects, and speciation. Ann Rev Ecol Syst, 15, 133–164.

    Article  Google Scholar 

  • Ben-Shlomo, R, Figueroa, F, Klein, J, and Nevo, E. 1988. Mhc class II DNA polymorphisms within and between chromosomal species of the Spalax ehrenbergi superspecies in Israel. Genetics, 119, 141–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdon, M A, Oldberg, A, Pierschbacher, M, and Ruoslahti, E. 1985. Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci, USA, 82, 1321–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson, H L, and Templeton, A R. 1984. Genetic revolutions in relation to speciation: The founding of new populations. Ann Rev Ecol Syst, 15, 97–131.

    Article  Google Scholar 

  • Citri, Y, Colot, H V, Jacquier, A C, Yu, Q, Hall, J C, Baltimore, D, and Rosbash, M. 1987. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature, 326, 42–47.

    Article  CAS  PubMed  Google Scholar 

  • Chopra, R, Pearson, C H, Pringle, G A, Fackre, D S, and Scott, P G. 1985. Dermatan sulphate is located on serine-4 of bovine skin proteodermatan sulphate. Biochem J, 232, 277–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmunds, L N, JR., 1988. Cellular and Molecular Bases of Biological Clock: Models and Mechanisms for Circadian Timekeeping. Springer-Verlag, New York.

    Google Scholar 

  • Feinberg, A P, and Voglestein, B. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem, 137, 266–267.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, J F. 1982. Genetic approaches to circadian clocks. Ann Rev Plant Physiol, 33, 583–608.

    Article  CAS  Google Scholar 

  • Feldman, J F. 1988. Genetic of circadian clocks. Bot Acta, 101, 128–132.

    Article  Google Scholar 

  • Georges, M, Cochaux, P, Leouarre, A S, Young, M W, and Vassart, G. 1987. DNA fingerprint in man using a mouse probe related to part of the Drosophila ‘Per’ gene. Nucl Acids Res, 15, 7193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georges, M, Lequarre, A S, Castelli, M, Hanset, R, and Vassart, G. 1988. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet Cell Genet, 47, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Haim, A, Heth, G, Pratt, H, and Nevo, E. 1983. Photoperiodic effects on thermoregulation in a ‘blind’ subterranean mammal. J Exp Biol, 107, 59–64.

    CAS  PubMed  Google Scholar 

  • Hall, J C. 1984. Complex brain and behavioral functions disrupted by mutations in Drosophila. Dev Genet, 4, 355–378.

    Article  CAS  Google Scholar 

  • Hall, J C. 1990. Genetics of circadian rhythms. Ann Rev Genet, 24, 659–697.

    Article  CAS  PubMed  Google Scholar 

  • Holland, I B. 1983. Basic Cloning Techniques: Course manual. University of Leicester, Leicester, U.K.

    Google Scholar 

  • Jackson, F R, Bargiello, T A, Yun, S H, and Young, M W. 1986. Product of per locus of Drosophila shares homology with proteoglycans. Nature, 320, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A J, Wilson, V, and Thein, S L. 1985. Individual-specific ‘fingerprints’ of human DNA. Nature, 316, 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Konopka, R J, and Benzer, S. 1971. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci, USA, 68, 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriacou, C P, and Hall, J C. 1980. Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc Natl Acad Sci, USA, 77, 6729–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Weber, M, De Groot, E J, and Schweiger, H G. 1987. Sequence homology to the Drosophila per locus in higher plant nuclear DNA and in Acetabularia chloroplast DNA. Mol Gen Genet, 209, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • McClung, C R, Fox, B A, and Dunlap, J C. 1989. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature, 339, 558–562.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, T, and Fuerst, P A. 1985. Population bottlenecks and nonequilibrium models in population genetics.II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics, 111, 675–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, J, Hatch, J A, Simonis, S, and Cullen, S E. 1988. Identification of the glycosaminoglycan-attachment site of mouse invariant-chain proteoglycan core protein by site directed mutagenesis. Proc Natl Acad Sci, USA, 85, 1359–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M, Maruyama, T, and Chakraborty, R. 1975. The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Article  PubMed  Google Scholar 

  • Nevo, E. 1978. Genetic variation in natural populations: patterns and theory. Theor Pop Biol, 13, 121–177.

    Article  CAS  Google Scholar 

  • Nevo, E. 1983. Population genetics and ecology: the interface. In: Bendall, D. S. (ed.) Evolution from Molecules to Man, Cambridge University Press, Cambridge, pp. 287–321.

    Google Scholar 

  • Nevo, E. 1989. Modes of speciation: the nature and role of peripheral isolates in the origin of species. In: Giddings, L. V., Kaneshiro, K. Y. and Anderson, W. W. (eds) Genetics, Speciation and the Founder Principle, Oxford University Press, Oxford, pp. 205–236.

    Google Scholar 

  • Nevo, E. 1991. Evolution of vocal and vibrational communications in blind, photoperiod-perceptive, subterranean mole rats: Structure and Function. In: Le Berre, M. and Le Guelte, L. (eds) Le Rongeur et L'Espace, Edition R. Cha-baud, Paris, pp. 15–34.

    Google Scholar 

  • Nevo, E, and Beiles, A. 1988. Genetic parallelism of protein polymorphism in nature: ecological test of the neutral theory of molecular evolution. Biol J Linn Soc, 35, 229–245.

    Article  Google Scholar 

  • Nevo, E, and Beiles, A. 1989. Genetic diversity in the desert: patterns and testable hypotheses. J Arid Environ, 17, 241–244.

    Article  Google Scholar 

  • Nevo, E, Beiles, A, and Ben-Shlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In: Mani, G. S. (ed.) Lecture Notes in Biomathematics (Evolutionary Dynamics of Genetic Diversity), Springer-Verlag, Berlin, pp. 13–213.

    Google Scholar 

  • Nevo, E, Ben-Shlomo, R, and Maeda, N. 1989. Haptoglobin DNA polymorphism in subterranean mole rats of the Spalax ehrenbergi superspecies in Israel. Heredity, 62, 85–90.

    Article  PubMed  Google Scholar 

  • Nevo, E, Filippuicci, M G, and Beiles, A. 1990. Genetic diversity and its ecology correlates in nature: comparisons between subterranean, fossorial and aboveground, small mammals. In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, Alan R. Liss, New York, pp. 347–366.

    Google Scholar 

  • Nevo, E, Guttman, R, Haber, M, and Erez, E. 1982. Activity patterns of evolving mole rats. J Mamm, 63, 453–463.

    Article  Google Scholar 

  • Nevo, E, Heth, G, Beiles, A, and Frankenberg, E. 1987. Geographic dialects in blind mole rats: role of vocal communication in active speciation. Proc Natl Acad Sci, USA, 84, 3312–3315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo, E, Honeycutt, R L, Yonekawa, H, Nelson, K, and Hanzawa, N. 1993. Mitochondrial DNA polymorphisms in subterranean mole rats of the Spalax ehrenbergi super-species in Israel and its peripheral isolates. Mol Biol Evol. (in press).

  • Oldberg, A, Antonsson, P, and Heinegard, D. 1987. The partial amino acid sequence of bovine cartilage proteoglycan deduced from a cDNA clone contains numerous Ser-GIy sequences arranged in homologous repeats. Biochem J, 243, 255–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevet, P, Heth, G, Haim, A, and Nevo, E. 1984. Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehr ing): involvement of the Harderian gland, atrophied eyes and melatonin. J Exp Zool, 232, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Ralph, M R, and Menaker, M. 1988. A mutation of the circadian system in Golden Hamsters. Science, 241, 1225–1227.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P, Jacquier, A C, Abovich, N, Petersen, G, and Rosbach, M. 1986. The period clock locus of D. melanogaster codes for a proteoglycan. Cell, 46, 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Reppert, S M, Schwartz, W J, and Uhl, G R. 1987. Arginine vasopressin: a novel peptide in cerebrospinal fluid. Trends Neurosci, 10, 76–80.

    Article  CAS  Google Scholar 

  • Robinson, H C, Horner, A A, Ook, M, Ogren, S, and Lindahl, U. 1978. A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem, 253, 6687–6693.

    CAS  PubMed  Google Scholar 

  • Schwartz, W J, and Zimmerman, P. 1990. Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci, 10, 3685–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siwicki, K K, Strack, S, Rosbash, M, Hall, J C, and Jacklet, J W. 1989. An antibody to the Drosophila period protein recognizes circadian pacemaker neurons in Aplysia and Bulla. Neuron, 3, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Shin, H S, Bargiello, T A, Clark, B T, Jackson, F R, and Young, M W. 1985. An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature, 317, 445–448.

    Article  CAS  PubMed  Google Scholar 

  • Southern, E M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H, Moriwaki, K, and Nevo, E. 1987. Ribosomal DNA (rDNA) spacer polymorphism in mole rats. Mol Biol Evol, 4, 602–610.

    CAS  PubMed  Google Scholar 

  • Takahashi, J S, and Zatz, M. 1982. Regulation of circadian rhythmicity. Science, 217, 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q, Colot, H V, Kyriacou, C P, Hall, J C, and Rosbach, M. 1987. Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature, 326, 765–769.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. H-S Shin

    Present address: Department of Life Science, Pohang Institute of Science and Technology, Mt. 31, Hyoja-Dong, Pohang, Kyungbuk, 790-330, Republic of Korea

Authors and Affiliations

  1. Institute of Evolution, University of Haifa, Haifa, 31905, Israel

    R Ben-Shlomo & E Nevo

  2. Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA

    H-S Shin

Authors
  1. R Ben-Shlomo
    View author publications

    Search author on:PubMed Google Scholar

  2. H-S Shin
    View author publications

    Search author on:PubMed Google Scholar

  3. E Nevo
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shlomo, R., Shin, HS. & Nevo, E. Period-homologous sequence polymorphisms in subterranean mammals of the Spalax ehrenbergi superspecies in Israel. Heredity 70, 111–121 (1993). https://doi.org/10.1038/hdy.1993.19

Download citation

  • Received: 13 November 1991

  • Issue date: 01 February 1993

  • DOI: https://doi.org/10.1038/hdy.1993.19

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • mole rat
  • Per-homologous sequence
  • RFLP

This article is cited by

  • Circadian rhythm and theper ACNGGN repeat in the mole rat,Spalax ehrenbergi

    • Rachel Ben-Shlomo
    • Uzi Ritte
    • Eviatar Nevo

    Behavior Genetics (1996)

  • DNA fingerprinting to detect genetic variation in rice using hypervariable DNA sequences

    • W. Ramakrishna
    • K. V. Chowdari
    • P. K. Ranjekar

    Theoretical and Applied Genetics (1995)

  • Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: patterns and theory

    • Eviatar Nevo
    • M Grazia Filippucci
    • Avigdor Beiles

    Heredity (1994)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited