Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genomic map of a diploid hybrid species
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1993

Genomic map of a diploid hybrid species

  • Loren H Rieseberg1,
  • Hichang Choi1,
  • Ray Chan1 &
  • …
  • Chrystal Spore1 

Heredity volume 70, pages 285–293 (1993)Cite this article

  • 1375 Accesses

  • 97 Citations

  • Metrics details

Abstract

Several fertile diploid plant species have been shown to be derived from hybridization between species with strong chromosomal sterility barriers, yet little is known about the genomic processes that accompany this mode of speciation. As a first step toward understanding these processes we have generated a detailed genetic linkage map for Helianthus anomalus, a diploid species derived via hybridization between H. annum and H. petiolaris. This was generated using 161 RAPD loci and one isozyme locus. The genetic markers were distributed into 18 linkage groups and cover 2338 cM. Analysis of the parental origin of each locus/allele revealed that 44 were originally derived from H. annuus, 37 were derived from H. petiolaris, 54 could have been derived from either parent, and 25 were unique to H. anomalus. In addition, the parental linkage groups were not transmitted or retained intact in the hybrid species. Rather, molecular markers originating from both parental species were interspersed within individual H. anomalus linkage groups. Although there are several limitations to analysing hybrid genomic composition using this approach, these results do raise the possibility that diploid hybrid species may be able to retain different portions and/or proportions of their parental species' genomes. This characteristic may provide diploid hybrid species with greater flexibility than allopolyploid species in terms of optimizing their genomes for a new ecological niche and may permit the production of several different diploid hybrid species from the same two parents, as appears to have happened in Helianthus.

Similar content being viewed by others

Hybrid speciation driven by multilocus introgression of ecological traits

Article Open access 17 April 2024

Intraspecific diploidization of a halophyte root fungus drives heterosis

Article Open access 12 July 2024

Reidentification of hybridization events with transcriptomic data and phylogenomic study in Seabuckthorn

Article Open access 06 July 2025

Article PDF

References

  • Beckstrom-Sternberg, S, Rieseberg, L H, and Doan, K. 1991b. Gene lineage analysis of populations of Helianthus niveus and H. petiolaris. Pl Syst Evol, 175, 125–138.

    Article  CAS  Google Scholar 

  • Bonierbale, M W, Plaisted, R L, and Tanksley, S D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120, 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler, J M, Jan, C, and Beard, B H. 1986. Chromosomal differentiation among the annual Helianthus species. Syst Bot, 11, 353–371.

    Article  Google Scholar 

  • Dorado, O, Rieseberg, L H, and Arias, D. 1992. Chloroplast DNA introgression in southern California sunflowers. Evolution, 46, 566–572.

    Article  PubMed  Google Scholar 

  • Doyle, J J, and Doyle, J L. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phyto chem Bull, 19, 11–15.

    Google Scholar 

  • Ferriera, V. 1980. Introgressive hybridization between Helianthus annuus L. and Helianthus petiolaris Nutt. Mendeliana, 4, 81–93.

    Google Scholar 

  • Gebhardt, C, Ritter, E, Debener, T, Schachtschabel, U, Walkemeier, B, Uhrig, H, and Salamini, F. 1989. RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet, 78, 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Gerassimova, H. 1939. Chromosome alterations as a factor of divergence of forms. I. New experimentally produced strains of C. tectorum which are physiologically isolated from the original forms owing to reciprocal translocations. Compt Rend Acad Sci URSS, 25, 148–154.

    Google Scholar 

  • Grant, V. 1958. The regulation of recombination in plants. Cold Spring Harbor Symposia Quant Biol, 23, 337–363.

    Article  CAS  Google Scholar 

  • Grant, V. 1963. The Origins of Adaptations. Columbia University Press, New York.

    Google Scholar 

  • Grant, V. 1966a. Selection for vigor and fertility in the progeny of a highly sterile species hybrid in Gilia. Genetics, 53, 757–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, V. 1966b. The origin of a new species of Gilia in a hybridization experiment. Genetics, 54, 1189–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havey, M J, and Muehlbauer, F J. 1989. Linkages between restriction fragment length, isozyme, and morphological markers of lentil. Theor Appl Genet, 77, 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Heiser, C B. 1947. Hybridization between the sunflower species Helianthus annuus and H. petiolaris. Evolution, 1, 249–262.

    Article  Google Scholar 

  • Heiser, C B. 1958. Three new annual sunflowers (Helianthus) from the southwestern United States. Rhodora 60, 271–283.

    Google Scholar 

  • Heiser, C B, Smith, D M, Clevenger, S, and Martin, W C. 1969. The North American sunflowers (Helianthus). Mem Torrey Bot Club, 22, 1–218.

    Google Scholar 

  • Helentjaris, T, Weber, D F, and Wright, S. 1988. Duplicate sequences in maize and identification of their genomic locations through restriction fragment length polymorphisms. Genetics, 118, 355–363.

    Google Scholar 

  • Lander, E S, Green, P, Abrahamson, J, Barlow, A, Daly, M J, Lincoln, S E, and Newbury, L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Landry, B S, Hubert, N, Etoh, T, Harada, J J, and Lincoln, S E. 1991. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 34, 543–552.

    Article  CAS  Google Scholar 

  • McCouch, S R, Kochert, B, Yu, Z H, Wang, Z Y, Khush, G S, Coffman, W R, and Tanksley, S D. 1988. Molecular mapping of rice chromosomes. Theor Appl Genet, 76, 815–829.

    Article  CAS  PubMed  Google Scholar 

  • Nabhan, G P, and Reichhardt, K L. 1983. Hopi protection of Helianthus anomalus, a rare sunflower. Southwest Nat, 28, 231–235.

    Article  Google Scholar 

  • Oliveri, A M, and Jain, S K. 1977. Variation in the Helianthus exilis-bolanderi complex. Madrono, 24, 177–189.

    Google Scholar 

  • Rieseberg, L H. 1991a. Homoploid reticulate evolution in Helianthus: Evidence from ribosomal genes. Am J Bot, 78, 1218–1237.

    Article  Google Scholar 

  • Rieseberg, L H. 1991b. Hybridization in rare plants: insights from case studies in Helianthus and Cercocarpus. In: Falk, D. A. and Holsinger, K. E. (eds) Conservation of Rare Plants: Biology and Genetics, Oxford University Press, Cambridge, pp. 171–181.

    Google Scholar 

  • Rieseberg, L H, Beckstrom-Sternberg, S, and Doan, K. 1990a. Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius. Proc Natl Acad Sci, USA, 87, 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiseberg, L H, Beckstrom-Sternberg, S, Liston, A, and Arias, D. 1991a. Phylogenetic and systematic inferences from chloroplastDNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot, 16, 50–76.

    Article  Google Scholar 

  • Rieseberg, L H, Carter, R, and Zona, S. 1990b. Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species. Evolution, 44, 1498–1511.

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg, L H, Choi, H, and Ham, D. 1991b. Differential cytoplasmic versus nuclear gene flow in Helianthus. J Hered, 82, 489–493.

    Article  Google Scholar 

  • Rieseberg, L H, and Seiler, G. 1990. Molecular evidence and the origin and development of the domesticated sunflower (H. annuus L.). Econ Bot, 44, 79s–91s.

    Article  Google Scholar 

  • Rieseberg, L H, Soltis, D E, and Soltis, P S. 1988. Genetic variation in Helianthus annuus and H. bolanderi. Bio chem Syst Ecol, 16, 393–399.

    Article  Google Scholar 

  • Schilling, E E, and Heiser, C B. 1981. An infrageneric classification of Helianthus (Compositae). Taxon, 30, 393–403.

    Article  Google Scholar 

  • Slocum, M K, Figdore, S S, Kennard, W C, Suzuki, J Y, and Osborn, T C. 1990. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet, 75, 784–794.

    Google Scholar 

  • Smith, H H, and Daly, K. 1959. Discrete populations derived by interspecific hybridization and selection in Nicotiana. Evolution, 13, 476–487.

    Article  Google Scholar 

  • Soltis, P S, Doyle, J J, and Soltis, D E. 1992. Molecular data and polyploid evolution in plants. In: Soltis, P. S., Doyle, J. J., and Soltis, D. E. (eds) Molecular Systematics of Plants, Chapman&Hall, New York, pp. 177–201.

    Chapter  Google Scholar 

  • Song, K M, Osborn, T C, and Williams, P H. 1988. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet, 75, 784–794.

    Article  CAS  Google Scholar 

  • Song, K M, Suzuki, J Y, Slocum, M K, Williams, P H, and Osborn, T C. 1991. A linkage map for Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet, 82, 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, G L. 1957. The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia, Suppl. Vol., pp. 336–340.

  • Suiter, K A, Wendel, J F, and Case, J S. 1983. Linkage-1: A Pascal computer program for the detection and analysis of genetic linkage. J Hered, 74, 203–204.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley, S D, Bernatsky, R, Lapitan, N L, and Prince, J P. 1988a. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci, USA, 85, 6419–6423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley, S D, Miller, J, Paterson, A, and Bernatsky, R. 1988b. Molecular mapping of plant chromosomes. In: Gustafson, J. P. and Appels, R. (eds) Chromosome Structure and Function, Plenum Press, New York, pp. 157–173.

    Chapter  Google Scholar 

  • Williams, J K G, Kubelik, A R, Livak, K J, Rafalski, J A, and Tingey, S V. 1990. DNA polymorphisms amplified by arbitrary primers and useful genetic markers. Nucl Acids Res, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, N D, and Tanksley, S D. 1989. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 77, 95–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Oscar Dorado, Peter Fritsch, Rhonda Rieseberg, Stan Spencer, and Richard Whitkus for their critical reading of the manuscript. This research was supported by National Science Foundation Grant BSR-8722643 to LHR.

Author information

Authors and Affiliations

  1. Rancho Santa Ana Botanic Garden, 1500 N. College Avenue, Claremont, 91711, CA, USA

    Loren H Rieseberg, Hichang Choi, Ray Chan & Chrystal Spore

Authors
  1. Loren H Rieseberg
    View author publications

    Search author on:PubMed Google Scholar

  2. Hichang Choi
    View author publications

    Search author on:PubMed Google Scholar

  3. Ray Chan
    View author publications

    Search author on:PubMed Google Scholar

  4. Chrystal Spore
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieseberg, L., Choi, H., Chan, R. et al. Genomic map of a diploid hybrid species. Heredity 70, 285–293 (1993). https://doi.org/10.1038/hdy.1993.41

Download citation

  • Received: 03 July 1992

  • Issue date: 01 March 1993

  • DOI: https://doi.org/10.1038/hdy.1993.41

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genomic mapping
  • Helianthus
  • hybrid speciation
  • RAPDs
  • sunflowers

This article is cited by

  • High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.)

    • G. J. Ma
    • Q. J. Song
    • L. L. Qi

    Theoretical and Applied Genetics (2018)

  • De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach

    • Venkatramana Pegadaraju
    • Rick Nipper
    • Quentin Schultz

    BMC Genomics (2013)

  • Defining the sunflower (Helianthus annuus L.) linkage group ends with the Arabidopsis-type telomere sequence repeat-derived markers

    • Jinguo Hu

    Chromosome Research (2006)

  • Identification and mapping of SNPs from ESTs in sunflower

    • Z. Lai
    • K. Livingstone
    • L. H. Rieseberg

    Theoretical and Applied Genetics (2005)

  • The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower

    • Sonali D. Gandhi
    • Adam F. Heesacker
    • Steven J. Knapp

    Theoretical and Applied Genetics (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited