Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe
Download PDF
Download PDF
  • Original Article
  • Published: 01 November 1994

Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe

  • L Grivet1,
  • A D'Hont1,
  • P Dufour1,
  • P Hamon1,
  • D Roques2 &
  • …
  • J C Glaszmann1 

Heredity volume 73, pages 500–508 (1994)Cite this article

  • 1140 Accesses

  • 72 Citations

  • Metrics details

Abstract

Comparative mapping within the tribe Andropogoneae has recently progressed with the development of mapped maize genomic probes that can be used for sorghum and sugar cane genomes. In the present study, data from previous reports were used to locate various linkage groups of sugar cane and sorghum on the genomic map of maize. Syntenic genome regions in the three plants were determined according to existing bridge-loci. The distribution of these synteny clusters closely matched the duplication pattern in maize. In several cases, the two arms of a single maize chromosome corresponded to at least two synteny clusters. There seem to be common chromosome rearrangements between maize and sugar cane and between maize and sorghum. In this respect, sugar cane and sorghum appear to be more closely related than either one with maize. A more detailed analysis of two synteny clusters was undertaken using recent sugar cane data to compare gene orders and recombination rates of the three plants. The three genomes showed colinearity in these regions. Distances between genes were similar in maize and sorghum, whereas sugar cane tended to display less recombination, at least in the varietal progeny investigated.

Similar content being viewed by others

Comparative evolutionary genetics of deleterious load in sorghum and maize

Article 15 January 2021

Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn

Article Open access 23 February 2021

A draft chromosome-scale genome assembly of a commercial sugarcane

Article Open access 28 November 2022

Article PDF

References

  • Ahn, S, and Tanksley, S D. 1993. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA, 93, 7980–7984.

    Article  Google Scholar 

  • Ahn, S, Anderson, J A, Sorrells, M E, and Tanksley, S D. 1993. Homeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet, 241, 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Al-Janabi, S M, Honeycutt, R J, McClelland, M, and Sobral, B W S. 1993. A genetic linkage map of Saccharum spontaneum L.‘SES208’. Genetics, 134, 1249–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen, J L, and Freeling, M. 1993. Grasses as a single system: genome composition, collinearity and compatibility. Trends Genet, 9, 259–261.

    Article  CAS  PubMed  Google Scholar 

  • Binelli, G, Gianfranceschi, L, Pé, M E, Taramino, G, Busso, C, Stenhouse, J, and Ottaviano, E. 1992. Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet, 84, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Bonierbale, M W, Plaisted, R L, and Tanksley, S D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120, 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burr, B, and Burr, A. 1991. Recombinant inbreds for molecular mapping in maize. Trends Genet, 7, 55–60.

    CAS  PubMed  Google Scholar 

  • Coe, E H, Jr, Neuffer, M G, and Hoisington, D A. 1988. The genetics of corn. In: Sprague, G. F. and Dudley, J. W. (eds) Corn and Corn Improvement, 3rd edn, pp. 81–257. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Da Silva, A G, Sorrells, M E, Burnquist, W L, and Tanksley, S D. 1993. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome, 36, 782–791.

    Article  CAS  Google Scholar 

  • D'Hont, A, Lu, Y-H, González De Léon, D, Grivet, L, Feldmann, P, Lanaud, C, and Glaszmann, J C. 1994. A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome, 37, 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Dowty, J, and Helentjaris, P. 1992. Duplicated RFLP loci are abundant in the genome. Maize Genet Coop Newsl, 66, 106.

    Google Scholar 

  • Eksomtramage, T, Paulet, F, Noyer, J L, Feldmann, P, and Glaszmann, J C. 1992. Utility of isozymes in sugarcane breeding. Sugar Cane, 3, 14–21.

    Google Scholar 

  • Gardiner, J R, Coe, E H, Melia-Hancock, S, Hoisington, D A, and Chao, S. 1993. Development of a core RFLP map in maize using an immortalized F2 population. Genetics, 134, 917–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaszmann, J C, Fautret, A, Noyer, J L, Feldmann, P, and Lanaud, C. 1989. Biochemical genetic markers in sugarcane. Theor Appl Genet, 78, 537–543.

    Article  CAS  PubMed  Google Scholar 

  • Helentjaris, T, Weber, D, and Wright, S. 1988. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics, 118, 353–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoisington, D. 1992. Laboratory protocols. CIMMYT Applied Molecular Genetics Laboratory. Mexico, D.F. CIMMYT.

    Google Scholar 

  • Hulbert, S H, Richter, T E, Axtell, J D, and Bennetzen, J L. 1990. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci, USA, 87, 4251–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E S, Green, P, Abrahamson, J, Barlow, A, Daly, M J, Lincoln, S E, and Newberg, L. 1987. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y-H, D'Hont, A, Walker, D I T, Rao, P S, Feldmann, P, and Glaszmann, J C. Relationships among ancestral species of sugarcane revealed with RFLP using single copy mazie nuclear probes. Euphytica, in press.

  • Melake Berhan, A, Hulbert, S H, Butler, L G, and Bennetzen, J L. 1993. Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet, 86, 598–604.

    Article  Google Scholar 

  • Moore, G, Gale, M D, Kurata, N, and Flavell, R B. 1993. Molecular analysis of small grain cereal genomes: current status and prospects. Bio/Technology, 11, 584–589.

    CAS  Google Scholar 

  • Quiros, C F, Ochoa, O, Kianian, S F, and Douches, D. 1987. Analysis of the Brassica oleracea chromosome addition lines: characterisation by isozymes and rDNA genes. Theor Appl Genet, 74, 758–766.

    Article  CAS  PubMed  Google Scholar 

  • Raina, S N. 1990. Genome organisation and evolution in the genus Vicia. In: Kawano, S. (ed.) Biological Approaches and Evolutionary Trends in Plants, pp. 183–201. Academic Press, London.

    Chapter  Google Scholar 

  • Saghai Maroof, M A, Soliman, R A, Jorgensen, R A, and Allard, A W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 81, 8014–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saideswara Rao, Y, Appa Rao, S, and Melak Mengesha, H. 1989. New evidence on the phylogeny of basic chromosome number in Pennisetum. Curr Sci, 58, 869–871.

    Google Scholar 

  • Sharp, P J, Kreis, M, Shewry, P R, and Gale, M D. 1988. Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet, 75, 286–290.

    Article  CAS  Google Scholar 

  • Sreenivasan, T V, Ahloowalia, B S, and Heinz, D J. 1987. Cytogenetics. In: Heinz, D. J., (ed.) Sugarcane Improvement Through Breeding, pp. 211–253. Elsevier Press, Amsterdam.

    Chapter  Google Scholar 

  • Whitkus, R, Doebley, J, and Lee, M. 1992. Comparative genome mapping of sorghum and maize. Genetics, 132, 1119–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, K K, Burnquist, W, Sorrells, M E, Tew, T L, Moore, P H, and Tanksley, S D. 1992. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet, 83, 294–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (C.I.R.A.D.), BP 5035, Montpellier Cedex, 34032, France

    L Grivet, A D'Hont, P Dufour, P Hamon & J C Glaszmann

  2. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (C.I.R.A.D.), Station de la Bretagne, Saint Denis Cedex, 97487, Réunion

    D Roques

Authors
  1. L Grivet
    View author publications

    Search author on:PubMed Google Scholar

  2. A D'Hont
    View author publications

    Search author on:PubMed Google Scholar

  3. P Dufour
    View author publications

    Search author on:PubMed Google Scholar

  4. P Hamon
    View author publications

    Search author on:PubMed Google Scholar

  5. D Roques
    View author publications

    Search author on:PubMed Google Scholar

  6. J C Glaszmann
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grivet, L., D'Hont, A., Dufour, P. et al. Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73, 500–508 (1994). https://doi.org/10.1038/hdy.1994.148

Download citation

  • Received: 01 February 1994

  • Issue date: 01 November 1994

  • DOI: https://doi.org/10.1038/hdy.1994.148

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genome mapping
  • maize
  • RFLP
  • sorghum
  • sugar cane
  • synteny

This article is cited by

  • Sucrose metabolism analysis in a high sucrose sugarcane mutant clone at a mature stage in contrast to low sucrose parental clone through the transcriptomic approach

    • Qaisar Khan
    • Ying Qin
    • Yang-Rui Li

    Chemical and Biological Technologies in Agriculture (2023)

  • Colinearity of putative flowering gene in both sugarcane and sorghum

    • Pattama Srinamngoen
    • Sontichai Chanprame
    • Ismail Dweikat

    Euphytica (2019)

  • Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars

    • Shiqiang Xu
    • Jihua Wang
    • Muqing Zhang

    Scientific Reports (2018)

  • GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane

    • Thiago Willian Almeida Balsalobre
    • Guilherme da Silva Pereira
    • Monalisa Sampaio Carneiro

    BMC Genomics (2017)

  • Red rot resistant gene characterization using RGAP markers among sugarcane cultivars resistant and susceptible to the red rot disease

    • Ruchika Sharma
    • Sushma Tamta

    3 Biotech (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited