Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Postcopulatory, prezygotic isolation in flour beetles
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1994

Postcopulatory, prezygotic isolation in flour beetles

  • Michael J Wade1,
  • Harold Patterson2,
  • Nancy W Chang1 &
  • …
  • Norman A Johnson1 

Heredity volume 72, pages 163–167 (1994)Cite this article

  • 1544 Accesses

  • 83 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We report the existence of postmating but prezygotic reproductive isolation within flour beetles of the genus Tribolium. Specifically, when a female of either T. castaneum or T. freemani is paired simultaneously with both a conspecific and a heterospecific male, virtually all of the offspring are sired by the conspecific male. In contrast, when a female of either species is paired only with a heterospecific male, she produces near normal numbers of offspring. Mate choice experiments rule out the possibility that premating reproductive isolation accounts for this phenomenon. A number of different mechanisms could explain this phenomenon of postmating but prezygotic reproductive isolation.

Similar content being viewed by others

Tribolium beetles as a model system in evolution and ecology

Article Open access 25 March 2021

Sexual morph specialisation in a trioecious nematode balances opposing selective forces

Article Open access 17 April 2022

The importance of reproductive isolation in driving diversification and speciation within Peruvian mimetic poison frogs (Dendrobatidae)

Article Open access 27 August 2024

Article PDF

References

  • Bella, J L, Butlin, R K, Ferris, C, and Hewitt, G M. 1992. Assymetrical homogamy and unequal sex ratio from reciprocal mating-order crosses between Chorthippus parallelus subspecies. Heredity, 68, 345–352.

    Article  Google Scholar 

  • Brownlee, A, and Sokoloff, A. 1988. Transmission of Tribolium castaneum (Herbst) mutants to T. castaneum-T. freemani (Hinton) hybrids (Coleoptera: Tenebrionidae) J Stored Prod Res, 24, 145–150.

    Article  Google Scholar 

  • Butlin, R. 1987. Speciation by reinforcement. Trends Ecol Evol, 2, 8–13.

    Article  CAS  Google Scholar 

  • Butlin, R. 1989. Reinforcement of premating isolation. In: Otte, D. and Endler, J. (eds) Speciation and Its Consequences, pp. 158–179. Sinauer Press, Sunderland, MA.

    Google Scholar 

  • Charlesworth, B, Coyne, J A, and Barton, N H. 1987. The relative rates of evolution of sex chromosomes and autosomes. Am Nat, 130, 113–146.

    Article  Google Scholar 

  • Coyne, J A. 1992. Genetics and speciation. Nature, 355, 511–515.

    Article  CAS  Google Scholar 

  • Coyne, J A. 1993. The genetics of an isolating mechanism between two sibling species of Drosophila. Evolution, 47, 778–789.

    Article  Google Scholar 

  • Coyne, J A, and Orr, H A. 1989. Patterns of speciation in Drosophila. Evolution, 42, 362–381.

    Article  Google Scholar 

  • Dobzhansky, Th. 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, Th. 1940. Speciation as a stage in evolutionary divergence. Am Nat, 74, 312–321.

    Article  Google Scholar 

  • Dobzhansky, Th. 1970. Genetics and the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Grant, B. 1983. On the relationship between average copulation duration and insemination reaction in the genus Drosophila. Evolution, 37, 854–856.

    Article  Google Scholar 

  • Grimaldi, D, James, A C, and Jaenike, J. 1992. Systematics and modes of reproductive isolation in the holarctic Drosophila testacea species group (Diptera: Drosophillidae). Ann Entomol Soc Am, 85, 671–685.

    Article  Google Scholar 

  • Hewitt, G M, Mason, P, and Nichols, R A. 1989. Sperm precedence and homogamy across a hybrid zone in the alpine grasshopper, Podismapedestris. Heredity, 62, 343–353.

    Article  Google Scholar 

  • Hinton, H E. 1948. A synopsis of the genus Tribolium MacLeay, with some remarks on the evolution of its species-groups (Coleoptera: Tenebronidae). Bull Ent Res, 39, 13–55.

    Article  CAS  Google Scholar 

  • Howard, D J. 1993. Reinforcement: the origin, dynamics and fate of an evolutionary hypothesis. In: Harrison, R. G. (ed.) Hybrid Zones and the Evolutionary Process, pp. 118–142. Oxford University Press, Oxford.

    Google Scholar 

  • Howard, D J, and Gregory, P G. 1993. Post-insemination signalling systems and reinforcement. Phil Trans R Soc Lond B, 340, 231–236.

    Article  Google Scholar 

  • Juan, C, Vazquez, P, Rubio, J M, Petitpierre, E, and Hewitt, O M. 1993. Presence of highly repetitive DNA sequences in Tribolium flour-beetles. Heredity, 70, 1–8.

    Article  CAS  Google Scholar 

  • Littlejohn, M J. 1981. Reproductive isolation: a critical review. In: Atchley, W. R. and Woodruff, D. (eds) Evolution and Speciation Cambridge University Press, Cambridge.

    Google Scholar 

  • Mayr, E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.

    Book  Google Scholar 

  • Muller, H J. 1942. Isolating mechanisms, evolution and temperature. Biol Symp, 6, 71–125.

    Google Scholar 

  • Park, T. 1933. Studies in population physiology. II. Factors regulating initial growth of Tribolium confusum populations. J Exp Zool, 65, 17–42.

    Article  Google Scholar 

  • Park, T. 1937. The inheritance of the mutation ‘pearl’ in the flour beetle Tribolium castaneum Herbst. Am Nat, 71, 143–157.

    Article  Google Scholar 

  • Park, T, Leslie, P H, and Mertz, D B. 1964. Genetic strains and competition in populations of Tribolium. Phys Zool, 37, 97–161.

    Article  Google Scholar 

  • Paterson, H E H. 1978. More evidence against speciation by reinforcement. S Afr J Sci, 74, 369–371.

    Google Scholar 

  • Patterson, J T. 1946. A new isolating mechanism in Drosophila. Proc Nat Acad Sci USA, 32, 202–208.

    Article  CAS  Google Scholar 

  • Shrode, R R. 1960. Evidence that mating is random in T. castaneum. Tribolium Inf Bull, 3, 15–16.

    Google Scholar 

  • Sokoloff, A. 1974. The Biology of Tribolium, 2. Clarendon Press, Oxford.

    Google Scholar 

  • Thornhill, R, and Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, MA.

    Book  Google Scholar 

  • Wade, M J. 1976. Group selection among laboratory populations of Tribolium. Proc Nat Acad Sci USA, 73, 4604–4607.

    Article  CAS  Google Scholar 

  • Wade, M J. 1977. An experimental study of group selection. Evolutional, 134–153.

    Article  Google Scholar 

  • Wade, M J, and Goodnight, C J. 1991. Wright's shifting balance theory: an experimental study. Science, 253, 1015–1018.

    Article  CAS  Google Scholar 

  • Wade, M J, and Johnson, N A. 1993. Reproductive isolation between two species of flour beetles, Tribolium castaneum and T. freemani: variation within and among geographical populations of T. castaneum. Heredity, 72, 155–162.

    Article  Google Scholar 

  • Walsh, N E, and Charlesworth, D. 1992. Evolutionary interpretations of differences in pollen tube growth rates. Quart Rev Biol, 67, 19–36.

    Article  Google Scholar 

  • Wu, C I, and Davis, A W. 1993. Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am Nat, 142, 189–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Ecology and Evolution, 1101 E. 57th Street, University of Chicago, Chicago, IL 60637, USA

    Michael J Wade, Nancy W Chang & Norman A Johnson

  2. Hyde Park Career Academy, 6220 S. Stony Island, Chicago, IL 60637, USA

    Harold Patterson

Authors
  1. Michael J Wade
    View author publications

    Search author on:PubMed Google Scholar

  2. Harold Patterson
    View author publications

    Search author on:PubMed Google Scholar

  3. Nancy W Chang
    View author publications

    Search author on:PubMed Google Scholar

  4. Norman A Johnson
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, M., Patterson, H., Chang, N. et al. Postcopulatory, prezygotic isolation in flour beetles. Heredity 72, 163–167 (1994). https://doi.org/10.1038/hdy.1994.23

Download citation

  • Received: 14 June 1993

  • Issue date: 01 February 1994

  • DOI: https://doi.org/10.1038/hdy.1994.23

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • speciation
  • postmating reproductive isolation
  • prezygotic reproductive isolation
  • mate choice
  • reinforcement
  • Tribolium

This article is cited by

  • Coexisting good neighbours: acoustic and calling microhabitat niche partitioning in two elusive syntopic species of balloon frogs, Uperodon systoma and U. globulosus (Anura: Microhylidae) and potential of individual vocal signatures

    • Vishal Kumar Prasad
    • Ming-Feng Chuang
    • Amaël Borzée

    BMC Zoology (2022)

  • The resilience of reproductive interference

    • Scott M. Villa
    • Diane D. Han
    • Nicole M. Gerardo

    Evolutionary Ecology (2021)

  • Reproduction barrier between two lineages of bed bug (Cimex lectularius) (Heteroptera: Cimicidae)

    • Kamila Wawrocka
    • Ondřej Balvín
    • Tomáš Bartonička

    Parasitology Research (2015)

  • Sperm competition and offspring viability at hybridization in Australian tree frogs, Litoria peronii and L. tyleri

    • C D H Sherman
    • E Wapstra
    • M Olsson

    Heredity (2010)

  • Speciation and Sexual Conflict

    • Sergey Gavrilets
    • Takehiko I. Hayashi

    Evolutionary Ecology (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited