Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Population structure of a predatory beetle: the importance of gene flow for intertrophic level interactions
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1994

Population structure of a predatory beetle: the importance of gene flow for intertrophic level interactions

  • Moshe Coll1,
  • Laura Garcia De Mendoza1 &
  • George K Roderick1 nAff2 

Heredity volume 72, pages 228–236 (1994)Cite this article

  • 1019 Accesses

  • 28 Citations

  • Metrics details

Abstract

Migration and gene flow of natural enemies play an important role in the stability of predator-prey interactions and community organization in both natural and managed systems. Yet, relative to that of their herbivorous insect prey, the genetic structure of natural enemy populations has been little studied. We present evidence that populations of the predatory coccinellid beetle Coleomegilla maculata (Coleoptera: Coccinellidae), are not genetically subdivided and that levels of gene flow among these populations are extremely high. Furthermore, in the same geographical area, gene flow of C. maculata was significantly (one order of magnitude) greater than that of an abundant prey species, the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). The high mobility of this natural enemy relative to the insect herbivores on which it feeds may contribute to its effectiveness as a biological control agent in agricultural systems.

Similar content being viewed by others

Genetic diversity of the zigzag ladybird beetle, Cheilomenes sexmaculata (F.) (Coleoptera: Coccinellidae) with its distribution in India and implications for biological control

Article Open access 05 May 2025

Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata

Article Open access 19 January 2023

Density-mediated foraging behavioral responses of Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae)

Article Open access 28 May 2024

Article PDF

References

  • Angalet, G W, Tropp, J M, and Eggert, A N. 1979. Coccinelld septempunctata in the United States: recolonization and notes on its ecology. Environ Entomol, 8, 896–901.

    Article  Google Scholar 

  • Atallah, Y H, and Newsom, L D. 1966. Ecological and nutritional studies on Coleomegilla maculata De Geer (Coleoptera: Coccinellidae). I. The development of an artificial diet and a laboratory rearing technique. J Econ Entomol, 59, 1173–1180.

    Article  Google Scholar 

  • Birky, C W, Fuerst, P, and Maruyama, T. 1989. Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells and comparison of nuclear genes. Genetics, 121, 613–627.

    PubMed  Google Scholar 

  • Butlin, R K. 1990. Divergence in emergence time of host races due to differential gene flow. Heredity, 65, 47–50.

    Article  PubMed  Google Scholar 

  • Caprio, M A, and Tabashnik, B E. 1992a. Allozymes used to estimate gene flow among populations of diamondback moth (Lepidoptera: Plutellidae) in Hawaii. Environ Entomol, 21, 808–816.

    Article  Google Scholar 

  • Caprio, M A, and Tabashnik, B E. 1992b. Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J Econ Entomol, 85, 611–620.

    Article  Google Scholar 

  • Chakraborty, R, and Leimar, O. 1987. Genetic variation within a subdivided population. In: Ryman, N. and Utter, F. (eds) Population Genetics and Fisheries Management. pp. 80–120. University of Washington Press, Seattle, Washington.

    Google Scholar 

  • Coll, M. 1991. Effects of vegetation texture on the Mexican bean beetle and its parasitoid, Pediobius foveolatus. Ph.D. Dissertation. University of Maryland.

  • Coll, M, and Bottrell, D G. 1991. Microhabitat and resource selection of the European corn borer (Lepidoptera: Pyralidae) and its natural enemies in Maryland field corn. Environ Entomol, 20, 526–533.

    Article  Google Scholar 

  • Comins, H N. 1977. The development of insecticide resistance in the presence of migration. J Theor Biol, 64, 177–197.

    Article  CAS  PubMed  Google Scholar 

  • Cosper, R D, Gaylor, M J, and Williams, J C. 1983. Intraplant distribution of three insect predators on cotton and seasonal effects of their distribution on vacuum sampler efficiency. Environ Entomol, 12, 1568–1571.

    Article  Google Scholar 

  • Croft, B A, and Brown, A W A. 1975. Response of arthropod natural enemies to insecticides. Ann Rev Entomol, 20, 285–355.

    Article  CAS  Google Scholar 

  • Crow, J F. 1986. Basic Concepts in Population, Quantitative and Evolutionary Genetics. W. H. Freeman, New York.

    Google Scholar 

  • Crow, J F, and Aoki, K. 1984. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA, 81, 6073–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley, P H. 1992. Resampling methods for computation-intensive data analysis in ecology and evolution. Ann Rev Ecol Syst, 23, 405–447.

    Article  Google Scholar 

  • Daly, J C. 1989. The use of electrophoretic data in a study of gene flow in the pest species Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae). In: Loxdale, H. D. and Den Hollander, J. (eds) Electrophoretic Studies on Agricultural Pests, pp. 115–141. Clarendon Press, Oxford.

    Google Scholar 

  • Ehrlich, P R, and Raven, P H. 1969. Differentiation of populations. Science, 165, 1228–1232.

    Article  CAS  PubMed  Google Scholar 

  • Elsey, K D. 1974. Influence of plant host on searching speed of two predators. Entomophaga, 19, 197.

    Article  Google Scholar 

  • Endler, J A. 1979. Gene flow and life history patterns. Genetics, 93, 263–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewert, M A, and Chiang, H C. 1966. Dispersal of three species of coccinellids in corn fields. Can Era, 98, 999–1003.

    Google Scholar 

  • Georghiou, G P. 1972. The evolution of resistance to pesticides. Ann Rev Ecol Syst, 3, 133–168.

    Article  CAS  Google Scholar 

  • Georghiou, G P, and Taylor, C E. 1977. Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol, 7, 319–323.

    Article  Google Scholar 

  • Gordon, H T. 1961. Nutritional factors in insect resistance to chemicals. Ann Rev Entomol, 6, 27–54.

    Article  CAS  Google Scholar 

  • Graves, J B, Mohamad, R B, and Clower, D F. 1978. Beneficial insects [Coleomegilla maculata, Caocoria punatipes, Onus insidiscus] also developing ‘resistance’ [Biological control with insect predators and parasites]. La-Agric, 22, 11–12.

    Google Scholar 

  • Groden, E, Drummond, F A, Casagrande, R A, and Haynes, D L. 1990. Coleomegilla maculata (Coleoptera: Coccinellidae): its predation upon the Colorado potato beetle (Coleoptera: Chrysomelidae) and its incidence in potatoes and surrounding crops. J Econ Entomol, 83, 1306–1315.

    Article  Google Scholar 

  • Hagen, K S. 1962. Biology and ecology of predacious coccinellidae. Ann Rev Entomol, 7, 289–326.

    Article  Google Scholar 

  • Hassell, M P. 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Hassell, M P, and May, R M. 1988. Spatial heterogeneity and the dynamics of parasitoid-host systems. Ann Zoo Fennici, 25, 55–61.

    Google Scholar 

  • Hazzard, R V, and Ferro, D N. 1991. Feeding responses of adult Coleomegilla maculata (Coleoptera: Coccinellidae) to eggs of Colorado potato beetle (Coleoptera: Chrysomelidae) and green peach aphids (Homoptera: Aphididae). Environ Entomol, 20, 644–651.

    Article  Google Scholar 

  • Hazzard, R V, Ferro, D N, Van Drieshe, R G, and Tuttle, A F. 1991. Mortality of eggs of Colorado potato beetle (Coleoptera: Chrysomelidae) from predation by Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol, 20, 841–848.

    Article  Google Scholar 

  • Head, R, Neel, W W, Sartor, C F, and Chambers, H. 1977. Methyl parathion and carbaryl resistance in Chrysomela scripta and Coleomegilla maculata. Bull Env Contam Tox, 17, 163–164.

    Article  CAS  Google Scholar 

  • Hebert, P D N, and Beaton, M J. 1989. Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Helena Laboratories, Beaumont Texas.

    Google Scholar 

  • Hodek, I. 1973. Biology of Coccinellidae. Academia, Prague.

    Book  Google Scholar 

  • Hsiao, T H. 1989. Estimation of genetic variability amongst Coleoptera. In: Loxdale, H. D. and den Hollander, J. (eds) Electrophoretic Studies on Agricultural Pests, pp. 143–180. Clarendon Press, Oxford.

    Google Scholar 

  • Huffaker, C B. 1971. The ecology of pesticide interference with insect populations. In: Swift, J. E. (ed.) Agricultural Chemicals—Harmony or Discord for Food, People and the Environment, pp. 92–107. University of California, Berkeley, California.

    Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Krafsur, E S, Obrycki, J J, and Flanders, R V. 1992. Gene flow in populations of the seven-spotted lady beetle, Coccinella septempunctata. J Hered, 83, 440–444.

    Article  Google Scholar 

  • Loxdale, H D, and Den Hollander, J. (eds) 1989. Electrophoretic Studies on Agricultural Pests. Clarendon Press, Oxford.

    Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Marck, T P, and Smilowitz, Z. 1982. CMACSIM, a temperature-dependent predator-prey model simulating the impact of Coleomegilla maculata (De Geer) on green peach aphids on potato plants. Environ Entomol, 11, 1193–1201.

    Article  Google Scholar 

  • McCauley, D E. 1991. Genetic consequences of local population extinction and recolonization. Trends Ecol Evol, 6, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • McCauley, D E, and Eanes, W F. 1987. Hierarchical population structure analysis of the milkweed beetle, Tetraopes tetraophthalmus (Forster). Heredity, 58, 193–201.

    Article  Google Scholar 

  • Murdoch, W W, Chesson, J, and Chesson, P. 1985. Biological control in theory and practice. AM Nat, 125, 344–366.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Nad Acad Sci USA, 70, 3321–3323.

    Article  CAS  Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet, 41, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Obrycki, J J, and Tauber, M J. 1978. Thermal requirements for development of Coleomegilla maculata (Coleoptera: Coccinellidae) and its parasite Perilitus coccinellae (Hymenoptera: Braconidae). Can Ent, 110, 407–412.

    Article  Google Scholar 

  • Pashley, D P, Johnson, S J, and Sparks, A N. 1985. Genetic population structure of migratory moths: the fall army-worm (Lepidoptera: Noctuidae). Ann Entomol Soc Am, 78, 756–762.

    Article  Google Scholar 

  • Richardson, B J, Baverstock, P R, and Adams, M. 1986. Allozyme Electrophoresis. Academic Press, New York.

    Google Scholar 

  • Richardson, J V, and Deloach, C J. 1973. Seasonal abundance of Perilitus coccinellae and its coccinellid hosts and degree of parasitism in Central Missouri. Environ Entomol, 2, 138–141.

    Article  Google Scholar 

  • Roderick, G K. 1992. Post-colonization evolution of natural enemies. In: Kauffman, W. C. and Nechols, J. R. (eds) Selection Criteria and Ecological Consequences of Importing Natural Enemies Thomas Say Publ of Entomological Society of America, 1, 71–86.

    Google Scholar 

  • Roderick, G K. 1993. Genetics of host plant adaptation in planthoppers (Homoptera: Delphacidae). In: Denno, R. F. and Perfect, J. (eds) Planthoppers: Their Ecology, Genetics and Management, pp. 257–281. Chapman and Hall, New-York.

    Google Scholar 

  • Roderick, G K, and Caldwell, R L. 1992. An entomological perspective on animal dispersal. In: Stenseth, N. C. and Lidicker, W. Z. (eds) Animal Migration, pp. 274–290. Chapman and Hall, New York.

    Google Scholar 

  • Rosenheim, J A, and Hoy, M A. 1986. Intraspecific variation in levels of pesticide resistance in field populations of a para-sitoid, Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J Econ Entomol, 19, 1161–1173.

    Article  Google Scholar 

  • Rosenheim, J A, and Tabashnik, B E. 1991. Influence of generation time on the rate of response to selection. Am Nat, 137, 527–541.

    Article  Google Scholar 

  • SAS Institute. 1985. SAS User's Guide: Statistics, version 5. Cary, North Carolina.

  • Slatkin, M. 1985a. Gene flow in natural populations. Ann Rev Ecol Syst, 16, 393–430.

    Article  Google Scholar 

  • Slatkin, M. 1985b. Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    Article  PubMed  Google Scholar 

  • Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science, 236, 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M, and Barton, N H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43, 1349–1368.

    Article  PubMed  Google Scholar 

  • Smith, B C. 1960. A technique for rearing coccinellid beetles on dry foods and influence of various pollens on the development of Coleomegilla maculata Lengi Timb. (Coleoptera: Coccinellidae). Can J Zool, 38, 1047–1049.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. W.H. Freeman and Co., New York.

    Google Scholar 

  • Steiner, W W M, and Grasela, J J. 1993. Population genetics and gene variation in the predator, Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae). Ann Entomol Soc Am, 86, 309–321.

    Article  Google Scholar 

  • Strong, D R. 1988. Parasitoid theory: from aggregation to dispersal. Trends Ecol Evol, 3, 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Swofford, D L, and Selander, R B. 1981. Biosys-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered, 72, 281–283.

    Article  Google Scholar 

  • Tabashnik, B E. 1986. Evolution of pesticide resistance in predator/prey systems. Bull Entomol Soc Am, 32, 156–161.

    Google Scholar 

  • Tabashnik, B E, and Croft, B A. 1982. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operation factors. Environ Entomol, 11, 1137–1144.

    Article  Google Scholar 

  • Takahata, N. 1983. Gene identity and genetic differentiation of populations in the finite island model. Genetics, 104, 497–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata, N, and Nei, M. 1984. FST and GST statistics in the finite island model. Genetics, 107, 501–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, A D. 1991. Studying metapopulation effects in predator prey systems. Biol J Linn Soc, 42, 305–323.

    Article  Google Scholar 

  • Taylor, C E, and Georghiou, G P. 1979. Suppression of insecticide resistance by alteration of gene domination and migration. J Econ Entomol, 72, 105–109.

    Article  Google Scholar 

  • Warren, L O, and Tadic, M. 1967. Biological observations on Coleomegilla maculata and its role as a predator of the fall webworm. J Econ Entomol, 60, 1492–1496.

    Article  Google Scholar 

  • Weir, B S. 1990. Genetic Data Analysis. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics, 16, 114–138.

    Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  PubMed  Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations, vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, E J, and Laing, J E. 1980. Numerical response of coccinellids to aphids in corn in southern Ontario. Can Ent, 112, 977–988.

    Article  Google Scholar 

Download references

Author information

Author notes
  1. George K Roderick

    Present address: Hawaiian Evolutionary Biology Program, University of Hawaii, 3050 Maile Way Gilmore 310, Honolulu, HI, 96822, USA

Authors and Affiliations

  1. Department of Entomology, University of Maryland, College Park, 20742, MD, USA

    Moshe Coll, Laura Garcia De Mendoza & George K Roderick

Authors
  1. Moshe Coll
    View author publications

    Search author on:PubMed Google Scholar

  2. Laura Garcia De Mendoza
    View author publications

    Search author on:PubMed Google Scholar

  3. George K Roderick
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coll, M., Garcia De Mendoza, L. & Roderick, G. Population structure of a predatory beetle: the importance of gene flow for intertrophic level interactions. Heredity 72, 228–236 (1994). https://doi.org/10.1038/hdy.1994.32

Download citation

  • Received: 07 July 1993

  • Issue date: 01 March 1994

  • DOI: https://doi.org/10.1038/hdy.1994.32

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozyme
  • biological control
  • electrophoresis
  • gene flow
  • metapopulation
  • natural enemies

This article is cited by

  • Phylogeography of the ladybird Iberorhyzobius rondensis, a potential biological control agent of the invasive alien pine bast scale Matsucoccus feytaudi

    • Catarina Tavares
    • Alain Roques
    • Carlos Lopez-Vaamonde

    BioControl (2015)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited