Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic structure of natural stands of Fagus sylvatica L. (beech)
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1994

Genetic structure of natural stands of Fagus sylvatica L. (beech)

  • D Merzeau1,
  • B Comps1,
  • B Thiébaut2,
  • J Cuguen3 &
  • …
  • J Letouzey1 

Heredity volume 72, pages 269–277 (1994)Cite this article

  • 962 Accesses

  • 50 Citations

  • Metrics details

Abstract

The spatial genetic structures of three French natural beech stands were analysed using polymorphic enzyme loci. Two methods were used: F-statistics and spatial autocorrelation statistics. Within these stands where self-fertilization rate is 0, a low heterozygote deficit was observed which may be due to a moderate level of mating between relatives. However, no increase of this deficit was observed from one generation to the next. The spatial genetic structuring was low. Within one open stand composed of several patches, founder events are invoked to explain a significant autocorrelation. Within the two other stands, both dense, results are similar to those produced by simulations of an isolation by distance model. The genetic structure seems not to be stable in space and time which may be due to (i) a limited number of generations; (ii) an effective gene flow less limited than hypothesized; and (iii) fertility differences or phenological incompatibilities between individuals.

Similar content being viewed by others

Weak founder effects but significant spatial genetic imprint of recent contraction and expansion of European beech populations

Article 23 November 2020

Genomic variation of European beech reveals signals of local adaptation despite high levels of phenotypic plasticity

Article Open access 03 October 2024

Genetic diversity and fine-scale spatial genetic structure of European beech populations along an elevational gradient

Article Open access 26 June 2025

Article PDF

References

  • Cheliak, W M. 1985. Mating system dynamics in a Scots pine seed orchard. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, pp. 107–119. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Cheliak, W M, Morgan, K, Dancik, B P, and Yeh, F C. 1984. Segregation of allozymes in megagametophytes of viable seed from a natural population of Jack pine, Pinus banksiana Lamb. Theor Appl Genet, 69, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Cliff, A A, and Ord, J K. 1981. Spatial Processes: Models and Applications. Pion ed., London.

    Google Scholar 

  • Coles, J F, and Fowler, D P. 1976. Inbreeding in neighbouring trees in two white spruce populations. Silvae Genetica, 25, 29–34.

    Google Scholar 

  • Comps, B, Letouzey, J, and Savoie, J M. 1987. Phénologie du couvert arborescent dans une chênaie-hêtraie d'Aquitaine. Ann Sci For, 44, 153–170.

    Article  Google Scholar 

  • Comps, B, Thiebaut, B, Paule, L, Merzeau, D, and Letouzey, J. 1990. Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity, 65, 407–417.

    Article  Google Scholar 

  • Comps, B, Thiebaut, B, Sugar, I, Trinajstic, I, and Plazibat, M. 1991. Genetic variation of the Croatian beech stands (Fagus sylvatica L.): spatial differentiation in connection with the environment. Ann Sci For, 48, 15–28.

    Article  Google Scholar 

  • Cuguen, J. 1986. Différenciation génétique inter-et intrapopulation d'un arbre forestier anémophile: le cas du Hêtre (Fagus sylvatica L.). Thèse Doct. Université, Université des Sciences et Techniques du Languedoc, Montpellier.

  • Cuguen, J, Merzeau, D, and Thiebaut, B. 1988. Genetic structure of the European beech stands (Fagus sylvatica L.): F-statistics and importance of mating system characteristics in their evolution. Heredity, 60, 91–100.

    Article  Google Scholar 

  • Cuguen, J, Thiebaut, B, N'Tsiba, F, and Barriere, G. 1985. Enzymatic variability of beechstands (Fagus sylvatica L.) on three scales in Europe: evolutionary mechanisms. In: Jacquart, P., Heim, G. and Antonovics, J. (eds) Genetic Differentiation in Plants, pp. 17–39. NATO AS1 Series G5.

    Chapter  Google Scholar 

  • Dewey, S E, and Heywood, J S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution, 42, 834–838.

    Article  PubMed  Google Scholar 

  • Epperson, B K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics, 124, 757–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epperson, B K, and Allard, R W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics, 121, 369–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epperson, B K, and Clegg, M T. 1986. Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (lpomea purpurea). Am Nat, 128, 840–858.

    Article  Google Scholar 

  • Gabriel, K R, and Sokal, R R. 1969. A new statistical approach to geographic variation analysis. Systematic Zoology, 18, 259–270.

    Article  Google Scholar 

  • Gregorius, H R, Krauhausen, J, and Müller-Starck, G. 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica. Heredity, 57, 255–262.

    Article  Google Scholar 

  • Gullberg, U, Yazdani, R, Rudin, D, and Ryman, N. 1985. Allozyme variation in Scot's Pine (Pinus sylvestris L.) in Sweden. Silvae Genetica, 34, 193–201.

    Google Scholar 

  • Hamrick, J L, Godt, M J W, and Sherman-Broyles, S L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95–124.

    Article  Google Scholar 

  • Hamrick, J L, Mitton, J B, and Linhart, Y B. 1981. Levels of genetic variation in trees: influence of life history characteristics. In: Conkle, M. T. (ed.) Proceedings of a Symposium on Isozymes of North American forest trees and forest insects, pp. 35–47. Berkeley, California.

    Google Scholar 

  • Hey Wood, J S. 1991. Spatial analysis of genetic variation in plant populations. Ann Rev Ecol Syst, 22, 335–355.

    Article  Google Scholar 

  • Kirby, G C. 1975. Heterozygote frequencies in small sub-populations. Theor Pop Biol, 8, 31–48.

    Article  CAS  Google Scholar 

  • Knowles, P. 1984. Genetic variability among and within closely spaced populations of lodgepole pine. Can J Genet Cytol, 26, 177–184.

    Article  Google Scholar 

  • Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce [Picea mariana (Mill.) B. S. P.]. Silvae Genetica, 40, 13–19.

    Google Scholar 

  • Knowles, P, and Grant, M C. 1985. Genetic variation of lodgepole pine over time and microgeographical space. Can J Bot, 63, 722–784.

    Article  Google Scholar 

  • Learn, G H, and Schaal, B A. 1987. Population subdivision for ribosomal DNA repeats variants in Clematis fremontii. Evolution, 41, 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Linhart, Y B, Mitton, J B, Sturgeon, K B, and Davis, M L. 1981. Genetic variation in space and time in a population of Ponderosa pine. Heredity, 46, 407–426.

    Article  Google Scholar 

  • Merzeau, D. 1991. Estimation des paramètres du mode de reproduction et des structures génétiques du Hêtre (Fagus sylvatica L.). Thèse Doct. Université, Université de Bordeaux I.

  • Merzeau, D, Di Giusto, F, Comps, B, Thiebaut, B, Letouzey, J, and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in beech (Fagus sylvatica L.). Silvae Genetica, 38, 195–201.

    Google Scholar 

  • Mitton, J B, Linhart, Y B, Davis, M L, and Sturgeon, K B. 1981. Estimation of outcrossing in Ponderosa pine, Pinus ponderosa Laws, from pattern of segregation of protein polymorphisms and from frequencies of albino seedlings. Silvae Genetica, 30, 117–121.

    Google Scholar 

  • Mitton, J B, Linhart, Y B, Hamrick, J B, and Beckmann, J S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range. Theor Appl Genet, 51, 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Moran, P A P. 1950. Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Starck, G, Baradat, Ph, and Bergmann, F. 1992. Genetic variation within European tree species. New Forests, 6, 23–47.

    Article  Google Scholar 

  • Muona, O, and Szmidt, A Z. 1985. A multilocus study of natural populations of Pinus sylvestris. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, pp. 226–240. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Nakashisuka, T. 1984. Regeneration process of climax beech (Fagus crenata Blume) forests. IV. Gap formation. Jap J Ecol, 34, 75–85.

    Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet Lond, 41, 225–233.

    Article  CAS  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald, H. 1984. Floraison, pollinisation et fructification chez le Hêtre (Fagus sylvatica L.). In: Pesson, P. et Louveaux, J. (eds) Pollinisation et Productions Végétales, pp. 243–258. Masson, Pris.

    Google Scholar 

  • Perry, D J, and Knowles, P. 1990. Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands. Heredity, 66, 137–142.

    Article  Google Scholar 

  • Rudin, D, Eriksson, G, Ekberg, I, and Rasmusson, M. 1974. Studies of allele frequencies and inbreeding in Scots pine populations by the aid of isozyme technique. Silvae Genetica, 23, 10–13.

    Google Scholar 

  • Sakai, K I, and Park, G Y. 1971. Genetic studies in natural populations of forest trees: genetic differentiation within a forest of Cryptomeria japonica. Theor Appl Genet, 41, 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Schaal, B A. 1975. Population structure and local differentiation in Liatris cylindracea. Am Nat, 109, 511–528.

    Article  Google Scholar 

  • Shea, K L. 1985. Mating system and population structure in engelmann spruce and subalpine fir. Ph.D. Thesis, University of Colorado, Boulder.

  • Slatkin, M, and Arter, H E. 1991. Spatial autocorrelation methods in population genetics. Am Nat, 138, 499–517.

    Article  Google Scholar 

  • Sokal, R R, and Jacquez, G M. 1991. Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis. Evolution, 45, 152–168.

    Article  PubMed  Google Scholar 

  • Sokal, R R, Jacquez, G M, and Wooten, M C. 1989. Spatial autocorrelation analysis of migration and selection. Generics, 121, 845–855.

    CAS  Google Scholar 

  • Sokal, R R, and Oden, N L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol J Lin Soc, 10, 199–228. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol J Lin Soc, 10, 229–249.

    Article  Google Scholar 

  • Sokal, R R, and Oden, N L. 1991. Spatial autocorrelation analysis as an inferential tool in population genetics. Am Nat, 138, 518–521.

    Article  Google Scholar 

  • Sokal, R R, and Wartenberg, D E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics, 105, 219–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiebaut, B, Cuguen, J, Comps, B, and Merzeau, D. 1990. Genetic differentiation in beech (Fagus sylvatica L.) during periods of invasion and regeneration. In: Di Castri, F., Hansen, A. J., and Debussche, M. (eds) Biological Invasions in Europe and the Mediterranean Basin, pp. 379–390. Kluwer Academic Publishers, London.

    Chapter  Google Scholar 

  • Thiebaut, B, Lumaret, R, and Vernet, P. 1982. The bud enzymes of beech (Fagus sylvatica L.). Genetic distinction and analysis of polymorphism in several French populations. Silvae Genetica, 31, 51–60.

    Google Scholar 

  • Tigerstedt, P M A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas, 75, 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Tigerstedt, P M A, Rudin, D, Niemela, T, and Tammisola, J. 1982. Competition and neighbouring effect in a naturally regenerating population of Scots pine. Silvae Fennica, 2, 122–129.

    Google Scholar 

  • Van Damme, J M A. 1986. Gynodioecy in Plantago lanceolata L. V. Frequencies and distribution of nuclear and cytoplasmic genes. Heredity, 56, 355–364.

    Article  Google Scholar 

  • Wagner, D B, Sun, Z, Govindaraju, D R, and Dancik, B P. 1991. Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana-Pinus contorta sympatric region. Am Nat, 138, 156–170.

    Article  Google Scholar 

  • Waser, N M. 1987. Spatial genetic heterogeneity in a population of the montane perennial plant Delphinium nelsonii. Heredity, 58, 249–256.

    Article  Google Scholar 

  • Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics, 31, 39–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugenics, 15, 323–354.

    Article  CAS  Google Scholar 

  • Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.

    Article  Google Scholar 

  • Yacine, A. 1987. Une étude d'organisation de la diversité génétique inter-et intrapopulation chez le Chêne vert: Quercus ilex L. Thèse de 3ème cycle, Université des Sciences et Techniques du Languedoc, Montpellier.

  • Yazdani, R, Lindgren, D, and Rudin, D. 1985. Gene dispersion and selfing frequency in a seed-tree stand of Pinus sylvestris L. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, 60, 139–154. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Ziehe, M. 1983. Genotypic frequencies of the offspring generation under selection or male gamete production in partially self-fertilizing plant populations. Göttingen Research Notes in Forest Genetics, Göttingen no. 5.

Download references

Author information

Authors and Affiliations

  1. Département de Biologie des Végétaux ligneux, Université de Bordeaux I, Avenue des Facultés, Talence, 33405, France

    D Merzeau, B Comps & J Letouzey

  2. Université de Montpellier II, Institut de Botanique, 163 Rue A. Broussonet, 34000 Montpellier and CNRS Centre Louis Emberger, Montpellier, BP 5051 34033, France

    B Thiébaut

  3. Université de Lille 1, URA CNRS 1185, Laboratoire de Génétique et Evolution des Populations Végétales, Bat. SN2 and Institut Agricole et Alimentaire de Lille, Villeneuve d'Ascq Cédex, 59655, France

    J Cuguen

Authors
  1. D Merzeau
    View author publications

    Search author on:PubMed Google Scholar

  2. B Comps
    View author publications

    Search author on:PubMed Google Scholar

  3. B Thiébaut
    View author publications

    Search author on:PubMed Google Scholar

  4. J Cuguen
    View author publications

    Search author on:PubMed Google Scholar

  5. J Letouzey
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzeau, D., Comps, B., Thiébaut, B. et al. Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity 72, 269–277 (1994). https://doi.org/10.1038/hdy.1994.37

Download citation

  • Received: 24 August 1993

  • Issue date: 01 March 1994

  • DOI: https://doi.org/10.1038/hdy.1994.37

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • beech stands
  • Fagus sylvatica L.
  • genetic structures
  • spatial autocorrelation

This article is cited by

  • Factors determining fine-scale spatial genetic structure within coexisting populations of common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak (Q. petraea (Matt.) Liebl.)

    • Elżbieta Sandurska
    • Bartosz Ulaszewski
    • Jarosław Burczyk

    Annals of Forest Science (2024)

  • Stronger genetic differentiation among within-population genetic groups than among populations in Scots pine provides new insights into within-population genetic structuring

    • Darius Danusevičius
    • Om P. Rajora
    • Algirdas Augustaitis

    Scientific Reports (2024)

  • Spatial genetic structure in seed stands of Pinus lumholtzii B.L. Rob. & Fernald in Durango, Mexico

    • Carlos Alonso Reyes-Murillo
    • José Ciro Hernández-Díaz
    • Christian Wehenkel

    Tree Genetics & Genomes (2016)

  • Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability

    • A S Jump
    • L Rico
    • J Peñuelas

    Heredity (2012)

  • Towards a DNA marker assisted seed source identification: a pilot study in European beech (Fagus sylvatica L.)

    • N. Hasenkamp
    • B. Ziegenhagen
    • S. Liepelt

    European Journal of Forest Research (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited