Abstract
The spatial genetic structures of three French natural beech stands were analysed using polymorphic enzyme loci. Two methods were used: F-statistics and spatial autocorrelation statistics. Within these stands where self-fertilization rate is 0, a low heterozygote deficit was observed which may be due to a moderate level of mating between relatives. However, no increase of this deficit was observed from one generation to the next. The spatial genetic structuring was low. Within one open stand composed of several patches, founder events are invoked to explain a significant autocorrelation. Within the two other stands, both dense, results are similar to those produced by simulations of an isolation by distance model. The genetic structure seems not to be stable in space and time which may be due to (i) a limited number of generations; (ii) an effective gene flow less limited than hypothesized; and (iii) fertility differences or phenological incompatibilities between individuals.
Similar content being viewed by others
Article PDF
References
Cheliak, W M. 1985. Mating system dynamics in a Scots pine seed orchard. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, pp. 107–119. Springer Verlag, Berlin.
Cheliak, W M, Morgan, K, Dancik, B P, and Yeh, F C. 1984. Segregation of allozymes in megagametophytes of viable seed from a natural population of Jack pine, Pinus banksiana Lamb. Theor Appl Genet, 69, 145–151.
Cliff, A A, and Ord, J K. 1981. Spatial Processes: Models and Applications. Pion ed., London.
Coles, J F, and Fowler, D P. 1976. Inbreeding in neighbouring trees in two white spruce populations. Silvae Genetica, 25, 29–34.
Comps, B, Letouzey, J, and Savoie, J M. 1987. Phénologie du couvert arborescent dans une chênaie-hêtraie d'Aquitaine. Ann Sci For, 44, 153–170.
Comps, B, Thiebaut, B, Paule, L, Merzeau, D, and Letouzey, J. 1990. Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity, 65, 407–417.
Comps, B, Thiebaut, B, Sugar, I, Trinajstic, I, and Plazibat, M. 1991. Genetic variation of the Croatian beech stands (Fagus sylvatica L.): spatial differentiation in connection with the environment. Ann Sci For, 48, 15–28.
Cuguen, J. 1986. Différenciation génétique inter-et intrapopulation d'un arbre forestier anémophile: le cas du Hêtre (Fagus sylvatica L.). Thèse Doct. Université, Université des Sciences et Techniques du Languedoc, Montpellier.
Cuguen, J, Merzeau, D, and Thiebaut, B. 1988. Genetic structure of the European beech stands (Fagus sylvatica L.): F-statistics and importance of mating system characteristics in their evolution. Heredity, 60, 91–100.
Cuguen, J, Thiebaut, B, N'Tsiba, F, and Barriere, G. 1985. Enzymatic variability of beechstands (Fagus sylvatica L.) on three scales in Europe: evolutionary mechanisms. In: Jacquart, P., Heim, G. and Antonovics, J. (eds) Genetic Differentiation in Plants, pp. 17–39. NATO AS1 Series G5.
Dewey, S E, and Heywood, J S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution, 42, 834–838.
Epperson, B K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics, 124, 757–771.
Epperson, B K, and Allard, R W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics, 121, 369–378.
Epperson, B K, and Clegg, M T. 1986. Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (lpomea purpurea). Am Nat, 128, 840–858.
Gabriel, K R, and Sokal, R R. 1969. A new statistical approach to geographic variation analysis. Systematic Zoology, 18, 259–270.
Gregorius, H R, Krauhausen, J, and Müller-Starck, G. 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica. Heredity, 57, 255–262.
Gullberg, U, Yazdani, R, Rudin, D, and Ryman, N. 1985. Allozyme variation in Scot's Pine (Pinus sylvestris L.) in Sweden. Silvae Genetica, 34, 193–201.
Hamrick, J L, Godt, M J W, and Sherman-Broyles, S L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95–124.
Hamrick, J L, Mitton, J B, and Linhart, Y B. 1981. Levels of genetic variation in trees: influence of life history characteristics. In: Conkle, M. T. (ed.) Proceedings of a Symposium on Isozymes of North American forest trees and forest insects, pp. 35–47. Berkeley, California.
Hey Wood, J S. 1991. Spatial analysis of genetic variation in plant populations. Ann Rev Ecol Syst, 22, 335–355.
Kirby, G C. 1975. Heterozygote frequencies in small sub-populations. Theor Pop Biol, 8, 31–48.
Knowles, P. 1984. Genetic variability among and within closely spaced populations of lodgepole pine. Can J Genet Cytol, 26, 177–184.
Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce [Picea mariana (Mill.) B. S. P.]. Silvae Genetica, 40, 13–19.
Knowles, P, and Grant, M C. 1985. Genetic variation of lodgepole pine over time and microgeographical space. Can J Bot, 63, 722–784.
Learn, G H, and Schaal, B A. 1987. Population subdivision for ribosomal DNA repeats variants in Clematis fremontii. Evolution, 41, 433–438.
Linhart, Y B, Mitton, J B, Sturgeon, K B, and Davis, M L. 1981. Genetic variation in space and time in a population of Ponderosa pine. Heredity, 46, 407–426.
Merzeau, D. 1991. Estimation des paramètres du mode de reproduction et des structures génétiques du Hêtre (Fagus sylvatica L.). Thèse Doct. Université, Université de Bordeaux I.
Merzeau, D, Di Giusto, F, Comps, B, Thiebaut, B, Letouzey, J, and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in beech (Fagus sylvatica L.). Silvae Genetica, 38, 195–201.
Mitton, J B, Linhart, Y B, Davis, M L, and Sturgeon, K B. 1981. Estimation of outcrossing in Ponderosa pine, Pinus ponderosa Laws, from pattern of segregation of protein polymorphisms and from frequencies of albino seedlings. Silvae Genetica, 30, 117–121.
Mitton, J B, Linhart, Y B, Hamrick, J B, and Beckmann, J S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range. Theor Appl Genet, 51, 5–13.
Moran, P A P. 1950. Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.
Müller-Starck, G, Baradat, Ph, and Bergmann, F. 1992. Genetic variation within European tree species. New Forests, 6, 23–47.
Muona, O, and Szmidt, A Z. 1985. A multilocus study of natural populations of Pinus sylvestris. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, pp. 226–240. Springer Verlag, Berlin.
Nakashisuka, T. 1984. Regeneration process of climax beech (Fagus crenata Blume) forests. IV. Gap formation. Jap J Ecol, 34, 75–85.
Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet Lond, 41, 225–233.
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.
Oswald, H. 1984. Floraison, pollinisation et fructification chez le Hêtre (Fagus sylvatica L.). In: Pesson, P. et Louveaux, J. (eds) Pollinisation et Productions Végétales, pp. 243–258. Masson, Pris.
Perry, D J, and Knowles, P. 1990. Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands. Heredity, 66, 137–142.
Rudin, D, Eriksson, G, Ekberg, I, and Rasmusson, M. 1974. Studies of allele frequencies and inbreeding in Scots pine populations by the aid of isozyme technique. Silvae Genetica, 23, 10–13.
Sakai, K I, and Park, G Y. 1971. Genetic studies in natural populations of forest trees: genetic differentiation within a forest of Cryptomeria japonica. Theor Appl Genet, 41, 13–17.
Schaal, B A. 1975. Population structure and local differentiation in Liatris cylindracea. Am Nat, 109, 511–528.
Shea, K L. 1985. Mating system and population structure in engelmann spruce and subalpine fir. Ph.D. Thesis, University of Colorado, Boulder.
Slatkin, M, and Arter, H E. 1991. Spatial autocorrelation methods in population genetics. Am Nat, 138, 499–517.
Sokal, R R, and Jacquez, G M. 1991. Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis. Evolution, 45, 152–168.
Sokal, R R, Jacquez, G M, and Wooten, M C. 1989. Spatial autocorrelation analysis of migration and selection. Generics, 121, 845–855.
Sokal, R R, and Oden, N L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol J Lin Soc, 10, 199–228. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol J Lin Soc, 10, 229–249.
Sokal, R R, and Oden, N L. 1991. Spatial autocorrelation analysis as an inferential tool in population genetics. Am Nat, 138, 518–521.
Sokal, R R, and Wartenberg, D E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics, 105, 219–237.
Thiebaut, B, Cuguen, J, Comps, B, and Merzeau, D. 1990. Genetic differentiation in beech (Fagus sylvatica L.) during periods of invasion and regeneration. In: Di Castri, F., Hansen, A. J., and Debussche, M. (eds) Biological Invasions in Europe and the Mediterranean Basin, pp. 379–390. Kluwer Academic Publishers, London.
Thiebaut, B, Lumaret, R, and Vernet, P. 1982. The bud enzymes of beech (Fagus sylvatica L.). Genetic distinction and analysis of polymorphism in several French populations. Silvae Genetica, 31, 51–60.
Tigerstedt, P M A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas, 75, 47–60.
Tigerstedt, P M A, Rudin, D, Niemela, T, and Tammisola, J. 1982. Competition and neighbouring effect in a naturally regenerating population of Scots pine. Silvae Fennica, 2, 122–129.
Van Damme, J M A. 1986. Gynodioecy in Plantago lanceolata L. V. Frequencies and distribution of nuclear and cytoplasmic genes. Heredity, 56, 355–364.
Wagner, D B, Sun, Z, Govindaraju, D R, and Dancik, B P. 1991. Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana-Pinus contorta sympatric region. Am Nat, 138, 156–170.
Waser, N M. 1987. Spatial genetic heterogeneity in a population of the montane perennial plant Delphinium nelsonii. Heredity, 58, 249–256.
Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.
Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics, 31, 39–59.
Wright, S. 1951. The genetical structure of populations. Ann Eugenics, 15, 323–354.
Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.
Yacine, A. 1987. Une étude d'organisation de la diversité génétique inter-et intrapopulation chez le Chêne vert: Quercus ilex L. Thèse de 3ème cycle, Université des Sciences et Techniques du Languedoc, Montpellier.
Yazdani, R, Lindgren, D, and Rudin, D. 1985. Gene dispersion and selfing frequency in a seed-tree stand of Pinus sylvestris L. In: Gregorius, H. R. (ed.) Population Genetics in Forestry, 60, 139–154. Springer Verlag, Berlin.
Ziehe, M. 1983. Genotypic frequencies of the offspring generation under selection or male gamete production in partially self-fertilizing plant populations. Göttingen Research Notes in Forest Genetics, Göttingen no. 5.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Merzeau, D., Comps, B., Thiébaut, B. et al. Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity 72, 269–277 (1994). https://doi.org/10.1038/hdy.1994.37
Received:
Issue date:
DOI: https://doi.org/10.1038/hdy.1994.37
Keywords
This article is cited by
-
Factors determining fine-scale spatial genetic structure within coexisting populations of common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak (Q. petraea (Matt.) Liebl.)
Annals of Forest Science (2024)
-
Stronger genetic differentiation among within-population genetic groups than among populations in Scots pine provides new insights into within-population genetic structuring
Scientific Reports (2024)
-
Spatial genetic structure in seed stands of Pinus lumholtzii B.L. Rob. & Fernald in Durango, Mexico
Tree Genetics & Genomes (2016)
-
Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability
Heredity (2012)
-
Towards a DNA marker assisted seed source identification: a pilot study in European beech (Fagus sylvatica L.)
European Journal of Forest Research (2011)