Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: patterns and theory
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 1994

Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: patterns and theory

  • Eviatar Nevo1,
  • M Grazia Filippucci2 &
  • Avigdor Beiles1 

Heredity volume 72, pages 465–487 (1994)Cite this article

  • 1046 Accesses

  • 46 Citations

  • Metrics details

Abstract

Allozyme diversity in the superspecies Spalax ehrenbergi has been revisited by studying 36 gene loci in 241 subterranean mole rats from 22 populations and nine chromosomal species, four from Turkey (2n = 52E (east), 52W (west), 56 and 58), four from Israel (2n = 52, 54, 58 and 60), and one from Egypt (2n = 60). The following results were indicated. (1) Genetic patterns: 11 of the 36 loci analysed (30.5 per cent) were monomorphic across the range, fifteen (41.7 per cent) were weakly polymorphic and the remaining 10 loci (27.8 per cent) were strongly polymorphic. (2) Heterozygosity: the average H was 0.051, range 0.00–0.098. In Israel, H increased with aridity and climatic unpredictability towards the northern Negev Desert, and was remarkably high in small steppic semi-isolates and desert isolates. (3) Species discrimination: some of the S. ehrenbergi species can be discriminated qualitatively. (4) Genetic distances (D): between species these values averaged 0.077, range 0.001–0.269, with the highest D between the ancestor Turkish and descendant Israeli and Egyptian species. The phylogenetic tree supports the Turkish origin of the Israeli Spalax ehrenbergi species, and the recent speciation of the Egyptian Spalax. (5) Genetic diversity is mostly (58 per cent) within populations. (6) Allozyme correlates: allozyme diversity was significantly correlated with the external physical (both climatic and edaphic) and biotic (parasite infection and plant cover) environment. (7) Spatial autocorrelation of allozyme frequencies suggests that migration is not influential. (8) Gametic phase disequilibria were significant in four out of five species tested, and were associated with climatic and edaphic factors. These results support the environmental selection hypothesis of genetic diversity including the niche-width variation hypothesis in space and time. Natural selection appears to play a major role in genetic differentiation of proteins in adaptive radiation and speciation.

Similar content being viewed by others

Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

Article Open access 18 May 2022

The phylogeography of Middle Eastern tree frogs in Israel

Article Open access 02 February 2024

Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China

Article 13 August 2024

Article PDF

References

  • Atlas of Israel. 1970. Surveys of Israel. Ministry of Labour, Jerusalem and Elsevier, Amsterdam.

  • Ben-Shlomo, R, Shin, H-S, and Nevo, E. 1993. Period-homologous sequence polymorphisms in subterranean mammals of the Spalax ehrenbergi superspecies in Israel. Heredity, 70, 111–121.

    Article  CAS  PubMed  Google Scholar 

  • Burda, H, Filippucci, M G, Macholan, M, Nevo, E, and Zima, J. 1992. Biological, allozyme, and karyotype differentiation of African mole-rats (Cryptomys, Bathyergidae) from Zambia. Z Saugetierk Suppl, 57, 11–12.

    Google Scholar 

  • Catzeflis, F M, Nevo, E, Ahlquist, J E, and Sibley, C G. 1989. Relationships of the chromosomal species in the Eurasian mole rats of the Spalax ehrenbergi group as determined by DNA-DNA hybridization, and an estimate of the spalacid-murid divergence time. J Mol Evol, 29, 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1991. PHYLIP (Phytogeny Inference Package) manual of Version 34. Distributed by the author. University of Washington, Seattle.

    Google Scholar 

  • Filippucci, M G, Nascetti, G, Capanna, E, and Bullini, L. 1987. Allozyme variation and systematics of European moles of the genus Talpa (Mammalia, Insectivora). J Mammal, 68, 487–499.

    Article  Google Scholar 

  • Filippucci, M G, Hickman, G C, Capanna, E, and Nevo, E. 1991. Genetic diversity and differentiation of the endemic subterranean golden moles of South Africa (Chrysochloridae, Mammalia). Biochem Syst Ecol, 19, 461–466.

    Article  CAS  Google Scholar 

  • Gillespie, J. 1991. The Causes of Molecular Evolution. Oxford University Press, New York.

    Google Scholar 

  • Gorman, G C, and Renzi, J. JR. 1979. Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia, 1979, 242–249.

    Article  Google Scholar 

  • Honeycutt, R L, Nelson, K, Schlliter, D A, and Sherman, P W. 1991. Genetic variation within and among populations of the Naked mole-rat: Evidence from nuclear and mitochondrial genomes. In: Sherman, P. W., Jarvis, J. U. M. and Alexander, R. D. (eds) The Biology of the Naked Mole-Rat, pp. 195–208. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Nei, M. 1971. Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. Am Nat, 105, 385–398.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo, E. 1978. Genetic variation in natural populations: Patterns and theory. Theor Pop Biol, 13, 121–177.

    Article  CAS  Google Scholar 

  • Nevo, E. 1979. Adaptive convergence and divergence of subterranean mammals. Ann Rev Ecol Syst, 10, 269–308.

    Article  Google Scholar 

  • Nevo, E. 1983. Population genetics and ecology: the interface. In: Bendall, D. S. (ed.) Evolution from Molecules to Men, pp. 287–321. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nevo, E. 1985. Ecological and populational correlates of allozyme polymorphisms in mammals. Acta Zool Fenn, 170, 25–29.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nevo, E. 1988a. Genetic diversity in nature: Patterns and theory. Evol Biol, 23, 217–246.

    Article  Google Scholar 

  • Nevo, E. 1988b. Natural selection in action: The interface of ecology and genetics in adaptation and speciation at the molecular and organismal levels. In: Tchernov, E. and Yom-Tov, Y. (eds) Zoogeography of Israel, pp. 411–438. Dr. Junk Publications, Holland.

    Google Scholar 

  • Nevo, E. 1989. Modes of speciation: The nature and role of peripheral isolates in the origin of species. In: Giddings, L. V., Kaneshiro, K. Y. and Anderson, W. W. (eds) Genetics, Speciation and the Founder Principle, pp. 205–236. Oxford University Press, Oxford.

    Google Scholar 

  • Nevo, E. 1991. Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats; Spalax ehrenbergi superspecies, in Israel. Evol Biol, 25, 1–125.

    Google Scholar 

  • Nevo, E, and Shaw, C R. 1972. Genetic variation in a subterranean mammal, Spalax ehrenbergi. Biochem Genet, 7, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Nevo, E, and Cleve, H. 1978. Genetic differentiation during speciation. Nature, 275, 125–126.

    Article  CAS  PubMed  Google Scholar 

  • Nevo, E, and Beiles, A. 1988. Genetic parallelism of protein polymorphism in nature: ecological test of the neutral theory of molecular evolution. Biol J Linn Soc, 35, 229–245.

    Article  Google Scholar 

  • Nevo, E, and Beiles, A. 1989. Genetic diversity in the desert: Patterns and testable hypotheses. J Arid Env, 17, 241–244.

    Article  Google Scholar 

  • Nevo, E, and Reig, O A. (eds) 1990. Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Nevo, E, and Beiles, A. 1991. Genetic diversity and ecological heterogeneity in amphibian evolution. Copeia, 3, 565–592.

    Article  Google Scholar 

  • Nevo, E, and Beiles, A. 1992. MtDNA polymorphisms: evolutionary significance in adaptation and speciation of subterranean mole rats. Biol J Linn Soc, 47, 385–405.

    Article  Google Scholar 

  • Nevo, E, Kim, Y J, Shaw, C R, and Thaeler, C S. Jr. 1974. Genetic variation, selection and speciation in Thomomys talpoides pocket gophers. Evolution, 28, 1–23.

    Article  PubMed  Google Scholar 

  • Nevo, E, Heth, G, and Beiles, A. 1982. Population structure and evolution in subterranean mole rats. Evolution, 36, 1283–1289.

    Article  PubMed  Google Scholar 

  • Nevo, E, Beiles, A, and Ben-Shlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In: Mani, G. S. (ed.) Evolutionary Dynamics of Genetic Diversity. Lect. Notes Biomath., 53, 13–213.

    Article  Google Scholar 

  • Nevo, E, Corti, M, Ben-Shlomo, R, Beiles, A, Jarvis, J U M, and Hickman, G C. 1985a. Karyotype and allozyme differentiation in the endemic subterranean mole rats of Africa, the Bathyergidae. In: Abstr 4th Int Ther Congr, Edmonton, Alberta, p. 460.

    Google Scholar 

  • Nevo, E, Beiles, A, and Ben-Shlomo, R. 1985b. Genetic diversity and differentiation in mammals. In: Abstr 4th Int Ther Congr, Edmonton, Alberta, p. 459.

    Google Scholar 

  • Nevo, E, Ben-Shlomo, R, Beiles, A, Jarvis, J U M, and Hickman, G C. 1987. Allozyme differentiation and systematics of the endemic subterranean mole rats of South Africa (Rodentia, Bathyergidae). Biochem Syst Ecol, 15, 489–502.

    Article  Google Scholar 

  • Nevo, E, Filippucci, M G, Simson, S, and Heth, G. 1989. Karyotype and allozyme differentiation in the Spalax leucodon superspecies from Turkey. In: Abstr 5th Int Ther Congr Rome, p. 26.

  • Nevo, E, Filippucci, M G, and Beiles, A. 1990. Genetic diversity and its ecological correlates in nature: Comparisons between subterranean, fossorial, and aboveground small mammals. In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 347–366. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Nevo, E, Simson, S, Heth, G, Redi, C, and Filippucci, M G. 1991. Recent speciation of subterranean mole rats of the Spalax ehrenbergi superspecies in the El-Hammam isolate, northern Egypt. 6th International Colloquium on the Ecology and Taxonomy of Small African Mammals, Mitzpe Ramon, Israel, p. 43.

    Google Scholar 

  • Nevo, E, Ben-Shlomo, R, Beiles, A, Hart, C P, and Ruddle, F H. 1992. Homeobox DNA polymorphisms (RFLPs) in subterranean mammals of the Spalax ehrenbergi superspecies in Israel: Patterns, correlates and evolutionary significance. J Exp Zool, 263, 430–441.

    Article  CAS  Google Scholar 

  • Nevo, E, Honeycutt, R L, Yonekawa, H, Nelson, K, and Hanzawa, N. 1993. Mitochondrial DNA polymorphisms in subterranean mole rats of the Spalax ehrenbergi superspecies in Israel and its peripheral isolates. Mol Biol Evol, 10, 590–604.

    CAS  PubMed  Google Scholar 

  • Patton, J L. 1990. Geomyid evolution: The historical, selective, and random basis for divergence patterns within and among species. In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 49–69. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Patton, J L, and Yang, S Y. 1977. Genetic variation in Thomomys bottae pocket gophers: Macrogeographic patterns. Evolution, 31, 697–720.

    Article  PubMed  Google Scholar 

  • Patton, J L, and Smith, M F. 1990. The evolutionary dynamics of Thomomys bottae pocket gophers in California. Calif Univ Publ Zool, 123, 1–161.

    Google Scholar 

  • Sage, R D, Contreras, J R, Roig, V G, and Patton, J L. 1986. Genetic variation in the South American burrowing rodents of the genus Ctenomys (Rodentia: Ctenomyidae). Z Saugetierkunde, 51, 158–172.

    Google Scholar 

  • Saitou, N, and Nei, M. 1987. The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sarich, V M. 1977. Rates, sample sizes and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature, 263, 24–28.

    Article  Google Scholar 

  • Savic, I, and Nevo, E. 1990. The Spalacidae: Evolutionary history, speciation, and population biology. In: Nevo, E. and Reig, A. O. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 129–153. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Selander, R K, Kaufman, D W, Baker, R J, and Williams, S L. 1974. Genie and chromosomal differentiation in pocket gophers of the Geomys bursarius group. Evolution, 28, 557–564.

    Article  PubMed  Google Scholar 

  • Smith, M H, Charles, T G. JR, and Ramsey, P R. 1975. Genie heterozygosity and population dynamics in small mammals. In: Markert, C. L. (ed.) Isozymes IV, Genetics and Evolution, pp. 85–102. Academic Press, Inc., San Francisco.

    Google Scholar 

  • Sokal, R R, and Oden, N L. 1978a. Spatial autocorrelation in biology. I. Methodology. Biol J Linn Soc, 10, 199–228.

    Article  Google Scholar 

  • Sokal, R R, and Oden, N L. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc, 10, 229–249.

    Article  Google Scholar 

  • Sokal, R R, and Wartenberg, D W. 1983. A test of spatial autocorrelation using an isolation-by-distance model. Generics, 105, 219–237.

    CAS  Google Scholar 

  • Soulé, M, and Stewart, B R. 1970. The “niche variation” hypothesis: a test and alternatives. Am Nat, 104, 85–97.

    Article  Google Scholar 

  • SPSS. 1990. SPSS Reference Guide, Release 4, SPSS Inc., Chicago.

  • Swofford, D L, and Selander, R B. 1989. Manual of BIOSYS-1 Computer Program, Release 17. Distributed by D. L. Swofford, Illionoi's Natural History Survey.

  • Van Valen, L. 1965. Morphological variation and width of ecological niche. Am Nat, 99, 377–390.

    Article  Google Scholar 

  • Vithayasai, C. 1973. Exact critical values of the Hardy-Weinberg test statistic for two alleles. Commun Stat, 1, 229–242.

    Google Scholar 

  • Yates, T L, and Moore, D W. 1990. Speciation and evolution in the family Talpidae (Mammalia: Insectivora). In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 1–22. Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Evolution, University of Haifa, Haifa, 31905, Israel

    Eviatar Nevo & Avigdor Beiles

  2. Dipartimento di Biologia, II Universita di Roma, ‘Tor Vergata’, Via O. Raimondo, Roma, 00173, Italy

    M Grazia Filippucci

Authors
  1. Eviatar Nevo
    View author publications

    Search author on:PubMed Google Scholar

  2. M Grazia Filippucci
    View author publications

    Search author on:PubMed Google Scholar

  3. Avigdor Beiles
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevo, E., Filippucci, M. & Beiles, A. Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: patterns and theory. Heredity 72, 465–487 (1994). https://doi.org/10.1038/hdy.1994.65

Download citation

  • Received: 20 September 1993

  • Issue date: 01 May 1994

  • DOI: https://doi.org/10.1038/hdy.1994.65

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozyme polymorphisms
  • mole rats
  • natural selection
  • phylogenetic tree
  • Spalax ehrenbergi
  • speciation

This article is cited by

  • 16S rRNA gene polymorphism supports cryptic speciation within the lesser blind mole rat Nannospalax leucodon superspecies (Rodentia: Spalacidae)

    • Vanja Bugarski-Stanojević
    • Gorana Stamenković
    • Ivo Savić

    Mammalian Biology (2020)

  • The dimensions, modes and definitions of species and speciation

    • John Wilkins

    Biology & Philosophy (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited