Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes and influence of chromosome inversions
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 1995

Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes and influence of chromosome inversions

  • Blanche C Bitner-Mathé1 nAff3,
  • Alexandre A Peixoto1 &
  • Louis B Klaczko2 

Heredity volume 75, pages 54–61 (1995)Cite this article

  • 1047 Accesses

  • 47 Citations

  • Metrics details

Abstract

To characterize the morphological variation in a natural population of Drosophila mediopunctata, males were collected on three occasions at a single locality. From each wild-caught male 14 body measures were taken and the karyotype for inversions on chromosomes X and II was determined. Through a principal components analysis, two sources of variation, identified as size and shape, accounted for approximately 80 and 6 per cent of the total morphological variability, respectively. The shape component was determined primarily by variations in the position of the wing second longitudinal vein. Differences between collections were detected both for size and shape. An altitudinal cline was observed in respect of wing shape, although altitude explained only a small part of the shape variation. Size and shape were affected by chromosome II inversions. However, in respect of size, no direct differences were detected between karyotypes but a significant interaction between collecting date and karyotype was found. This suggests that karyotypes might differ in their norms of reaction in the field.

Similar content being viewed by others

Y chromosome-linked variation affects locomotor activity in male Drosophila melanogaster and is robust to differences in thermal environment

Article Open access 13 March 2023

Macroevolution along developmental lines of least resistance in fly wings

Article Open access 07 February 2025

Seasonal variation in wing size and shape of Drosophila melanogaster reveals rapid adaptation to environmental changes

Article Open access 26 August 2022

Article PDF

References

  • Alonso, A, and Munoz, A. 1984. Biometrie characterization of some wing measurements in Drosophila melanogaster. Drosoph Inf Serv, 60, 47–48.

    Google Scholar 

  • Arnold, J. 1981. Statistics of natural populations. I: Estimating an allele probability in cryptic fathers with a fixed number of offspring. Biometrics, 37, 495–504.

    Article  Google Scholar 

  • Barth, R. 1957. A fauna do Parque Nacional do Itatiaia. Bol Pq Nac Itatiaia, no. 6, 150 pp. Serviço Florestal, Ministério da Agricultura, Resende, Rio de Janeiro.

    Google Scholar 

  • Bookstein, F L, Chernoff, B, Elder, R L, Humphries, J M, Smith, G R, and Strauss, R E. 1985. Morphometries in Evolutionary Biology. Academy of Natural Sciences, Philadelphia, PA.

    Google Scholar 

  • Cavicchi, S, Giorgi, G, and Mochi, M. 1978. Investigation on early divergence between populations of Drosophila melanogaster kept at different temperatures. Genetica, 48, 81–87.

    Article  Google Scholar 

  • Coyne, J A, and Beecham, E. 1987. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics, 117, 727–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  • David, J, and Bocquet, C. 1975. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature, 257, 588–590.

    Article  CAS  PubMed  Google Scholar 

  • David, J R, Moreteau, B, Gauthier, J P, Pétavy, G, Tockel, A, and Imasheva, A G. 1994. Reaction norms of size characters in relation to growth temperature in Drosophila melanogaster. an isofemale lines analysis. Génét Sél Évol, 26, 229–251.

    Article  PubMed Central  Google Scholar 

  • Etges, W J. 1989. Chromosomal influences on life-history variation along an altitudinal transect in Drosophila robusta. Am Nat, 133, 83–110.

    Article  Google Scholar 

  • García-Vázquez, E, and Sánchez-Refusta, F. 1989. Chromosomal polymorphism and extra bristles of Drosophila melanogaster. joint variation under selection in isofemale lines. Genetica, 78, 91–96.

    Article  Google Scholar 

  • Hasson, E, Fanara, J J, Rodriguez, C, Vilardi, J C, Reig, O A, and Fontdevila, A. 1992. The evolutionary history of Drosophila buzzatii. XXIV. Second chromosome inversions have different average effects on thorax length. Heredity, 68, 557–563.

    Article  PubMed  Google Scholar 

  • Imasheva, A G, Bubli, O A, and Lazebny, O E. 1994. Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity, 72, 508–514.

    Article  PubMed  Google Scholar 

  • Klaczko, L B, and Bitner-Mathe, B C. 1990. On the edge of a wing. Nature, 346, 231.

    Article  Google Scholar 

  • Krimbas, C B, and Powell, J R. 1992. Drosophila Inversion Polymorphism. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lewontin, R C. 1974. The analysis of variance and the analysis of causes. Am J Hum Genet, 26, 400–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus, L F. 1990. Traditional morphometries. In: Rohlf, F. J. and Bookstein, F. L. (eds) Proc Michigan Morphometric Wortehop. Special Publication Number 2, pp. 77–122. The University of Michigan Museum of Zoology, Ann Arbor, MI.

    Google Scholar 

  • Matzke, M M, and Druger, M. 1976. Evolutionary divergence between two populations of Drosophila pseudoobscura. Evolutional, 597–602.

  • Maynard Smith, J, Burian, R, Kauffman, S, Alberch, P, Campbell, J, Goodwin, B, Lande, R, Raup, D, and Wolpert, L. 1985. Developmental constraints and evolution. Q Rev Biol, 60, 265–287.

    Article  Google Scholar 

  • Misra, R K. 1966. Vectorial analysis for genetic clines in body dimensions in populations of Drosophila subobscura Coll. and a comparison with those of Drosophila robusta Sturt. Biometrics, 22, 469–487.

    Article  CAS  PubMed  Google Scholar 

  • Misra, R K, and Reeve, E C R. 1964. Clines in body dimensions in populations of Drosophila subobscura. Genet Res, 5, 240–256.

    Article  Google Scholar 

  • Peixoto, A A, and Klaczko, L B. 1988. Polimorfismos de inversões cromossômicas em Drosophila mediopunctata III. Variacões sazonal e microgeográ;fica. Cienc Cult, 40 (Suppl.), 770.

    Google Scholar 

  • Peixoto, A A, and Klaczko, L B. 1991. Linkage disequilibrium analysis of chromosomal inversion polymorphisms of Drosophila. Genetics, 129, 773–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfriem, P. 1983. Latitudinal variation in wing size in Drosophila subobscura and its dependence on polygenes of chromosome O. Genetica, 61, 221–232.

    Article  Google Scholar 

  • Prevosti, A. 1955. Geographical variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harb Symp Quant Biol, XX, 294–299

    Article  Google Scholar 

  • Price, T, and Langen, T. 1992. Evolution of correlated characters. Trends Ecol Evol, 7, 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Prout, T, and Barker, J S F. 1989. Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics, 123, 803–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, A, Santos, M, Barbadilla, A, Daz, J E, Hasson, E, and Fontdevila, A. 1991. Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics, 128, 739–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, M, Fowler, K, and Partridge, L. 1994. Gene-environment interaction for body size and larval density in Drosophila melanogaster. an investigation of effects on development time, thorax length and adult sex ratio. Heredity, 72, 515–521.

    Article  PubMed  Google Scholar 

  • SAS Institute. 1988. SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute, Cary, NC.

  • Sesardic, N. 1993. Heritability and causality. Phil Sci, 60, 396–418.

    Article  Google Scholar 

  • Sokoloff, A. 1965. Geographic variation of quantitative characters in populations of Drosophila pseudoobscura. Evolution, 19, 300–310.

    Article  Google Scholar 

  • Sperlich, D, and Pfriem, P. 1986. Chromosomal polymorphism in natural and experimental populations. In: Ash-burner, M., Carson, H. L. and Thompson, J. N., Jr. (eds) The Genetics and Biology of Drosophila, 3e, pp. 257–309. Academic Press, London.

  • Stalker, H D, and Carson, H L. 1947. Morphological variation in natural populations of Drosophila robusta Sturtevant. Evolution, 1, 237–248.

    Google Scholar 

  • Stalker, H D, and Carson, H L. 1948. An altitudinal transect of Drosophila robusta Sturtevant. Evolution, 2, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Stalker, H D, and Carson, H L. 1949. Seasonal variation in the morphology of Drosophila robusta. Evolution, 3, 330–343.

    CAS  PubMed  Google Scholar 

  • Tachida, H, and Mukai, T. 1985. The genetic structure of natural populations of Drosophila melanogaster. XIX. Genotype-environment interaction in viability. Genetics, 111, 43–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy, A O. 1964. Studies on natural populations of Drosophila. III. Morphological and genetic differences of wing length in Drosophila melanogaster and D. simulans in relation to season. Evolution, 18, 560–570.

    Article  Google Scholar 

  • Van Delden, W, and Kamping, A. 1991. Changes in relative fitness with temperature among second chromosome arrangements in Drosophila melanogaster. Genetics, 127, 507–514.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Luis Lima Neto who provided us with the digitizing pad software, Dr Sergio Reis for invaluable suggestions during the development of this work and help with computation facilities and Dr Richard Strauss for insightful comments on the shearing method. We also thank Dr Antonio Bernardo de Carvalho, Dr Carlos R. Vilela and anonymous reviewers for critical comments of this manuscript. Mrs Clea Knauer da Silva gave us technical assistance. The Nücleo de Computacäo Gräfica da COPPE and NUTES from Universidade Federal do Rio de Janeiro provided facilities to perform part of this work. These investigations were supported by: Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Coordenacäo de Aperfeicoamento de Pessoal de Ensino Superior (CAPES) and Fundacäo de Amparo ä Pesquisa do Rio de Janeiro (FAPERJ).

Author information

Author notes
  1. Blanche C Bitner-Mathé

    Present address: Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, 05422-970, São Paulo, SP, Brazil

Authors and Affiliations

  1. Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, São Paulo, Brazil

    Blanche C Bitner-Mathé & Alexandre A Peixoto

  2. Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil

    Louis B Klaczko

Authors
  1. Blanche C Bitner-Mathé
    View author publications

    Search author on:PubMed Google Scholar

  2. Alexandre A Peixoto
    View author publications

    Search author on:PubMed Google Scholar

  3. Louis B Klaczko
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitner-Mathé, B., Peixoto, A. & Klaczko, L. Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes and influence of chromosome inversions. Heredity 75, 54–61 (1995). https://doi.org/10.1038/hdy.1995.103

Download citation

  • Received: 11 October 1994

  • Issue date: 01 July 1995

  • DOI: https://doi.org/10.1038/hdy.1995.103

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chromosome inversions
  • clines
  • Drosophila mediopunctata
  • morphometry
  • principal components
  • reaction norm
  • wing morphology

This article is cited by

  • A review of the taxonomy and biology of Triatominae subspecies (Hemiptera: Reduviidae)

    • Vinícius Fernandes de Paiva
    • Tiago Belintani
    • João Aristeu da Rosa

    Parasitology Research (2022)

  • Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster

    • Jeanne M. C. McDonald
    • Pegah Nabili
    • Alexander W. Shingleton

    EvoDevo (2021)

  • Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America

    • Blanche Christine Bitner-Mathé
    • Jean Robert David

    Genetica (2015)

  • Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes

    • Libéria Souza Torquato
    • Daniel Mattos
    • Blanche Christine Bitner-Mathé

    Genetica (2014)

  • Evolution of the male genitalia: morphological variation of the aedeagi in a natural population of Drosophila mediopunctata

    • Carlos A. C. Andrade
    • R. D. Vieira
    • Louis B. Klaczko

    Genetica (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited