Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Physical mapping of restriction fragment length polymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridization
Download PDF
Download PDF
  • Original Article
  • Published: 01 September 1995

Physical mapping of restriction fragment length polymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridization

  • J M Chen1 &
  • J P Gustafson2 

Heredity volume 75, pages 225–233 (1995)Cite this article

  • 1221 Accesses

  • 16 Citations

  • Metrics details

Abstract

In situ hybridization with biotin-labelled DNA probes was used to determine the physical location of markers from an RFLP-based genetic map of homoeologous group 7 in wheat (Triticum aestivum L.). The observed results indicated all probes hybridized to the corresponding group 7 chromosomes of all three wheat genomes and that the gene orders on the physical map were basically the same as that of the RFLP-based genetic map. The distance for each marker from the centromere on the physical map was different from those shown on the genetic map. Comparison of the genetic distance and the physical distance between two pairs of markers (Xpsr129 to Xpsr121, and Xpsr129 to Xpsr117) showed that the region between Xpsr129 and Xpsr121 contains a potential ‘hot’ spot of recombination on the chromosome arm. There appears to be considerable differences in crossing-over along the chromosomes. Most of the polymorphic markers are physically located in the middle portion of the chromosome arm to which they were genetically located, indicating reduced recombination in the centromeric and telomeric regions. Markers on the physical map were located outside the C-banded regions. The translocation break point involving 7BS and a colinear relationship among the homoeologous group 7 chromosomes are discussed.

Similar content being viewed by others

Identifying the physiological traits associated with DNA marker using genome wide association in wheat under heat stress

Article Open access 29 August 2024

Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits

Article Open access 12 August 2023

Homologous chromosome associations in domains before meiosis could facilitate chromosome recognition and pairing in wheat

Article Open access 22 June 2022

Article PDF

References

  • Beadle, G W. 1932. A possible influence of the spindle fibre on crossing-over in Drosophila. Proc Natl Acad Sci USA, 18, 160–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale, M W, Plaisted, R L, and Tanksley, S D. 1988. RFLP maps based on a common set of clones reveal models of chromosomal evolution in potato and tomato. Genetics, 120, 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, S, Sharp, P J, Worland, A J, Warnam, E J, Koebner, R M D, and Gale, M D. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet, 78, 495–504.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M, Karp, A, and Archer, S. 1989. Physical mapping of the B-hordein loci on barley chromosome 5 by in situ hybridization. Genome, 32, 925–929.

    Article  Google Scholar 

  • Curtis, C A, and Lukaszewski, A J. 1991. Genetic linkage between C-bands and storage protein genes in chromosome 1B of tetraploid wheat. Theor Appl Genet, 81, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Devos, K M, Atkinson, M D, Chinoy, C N, Liu, C J, and Gale, M D. 1992. RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet, 83, 931–939.

    Article  CAS  PubMed  Google Scholar 

  • Dillé, J E, Bittel, D C, Ross, K, and Gustafson, J P. 1990. Preparing plant chromosomes for scanning electron microscopy. Genome, 33, 333–339.

    Article  Google Scholar 

  • Endo, T R. 1988. Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered, 79, 336–370.

    Article  Google Scholar 

  • Friebe, B, Mukai, Y, Gill, B S, and Cauderon, Y. 1992. C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat X. Agropyron intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet, 84, 899–905.

    Article  CAS  PubMed  Google Scholar 

  • Ganal, M W, Young, N D, and Tanksley, S D. 1989. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol Gen Genet, 215, 395–400.

    Article  CAS  Google Scholar 

  • Gill, B S, Friebe, B, and Endo, T R. 1991a. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 34, 830–839.

    Article  Google Scholar 

  • Gill, K S, Lubbers, E L, Gill, B S, Raupp, W J, and Cox, T S. 1991b. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 34, 362–374.

    Article  Google Scholar 

  • Graner, A, Jahoor, A, Schondelmaier, J, Siedler, H, Pillen, K, Fischbeck, G, Wenzel, G, and Herrman, R G. 1991. Construction of an RFLP map of barley. Theor Appl Genet, 83, 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, J P, Butler, E, and McIntyre, C L. 1990. Physical mapping of a low-copy DNA sequence in rye (Secale cerealel.). Proc Natl Acad Sci USA, 87, 1899–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson, J P, Dera, A R, and Petrovic, S. 1988. Expression of modified rye ribosomal RNA genes in wheat. Proc Natl Acad Sci USA, 85, 3943–3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson, J P, and Dillé, J E. 1992. Chromosome location of Oryza sativa recombination linkage groups. Proc Natl Acad Sci USA, 89, 8646–8650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helentjaris, T, Slocum, M, Wright, S, Schaefer, A, and Nienhuis, J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet, 72, 257–264.

    Article  Google Scholar 

  • Heun, M A E, Anderson, I A, Lapitan, N L V, Sorrells, M E, and Tanksley, S D. 1991. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome, 34, 437–447.

    Article  Google Scholar 

  • Huang, P-L, Hahlbrock, K, and Somssich, I E. 1988. Detection of a single-copy gene on plant chromosomes by in situ hybridization. Mol Gen Genet, 211, 143–147.

    Article  CAS  Google Scholar 

  • Huttly, A K, Martienssen, R A, and Baulcombe, D C. 1988. Sequence heterogeneity and differential expression of the a-Amy2 gene family in wheat. Mol Gen Genet, 214, 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Kipling, D, Ackford, H E, Taylor, B A, and Cooke, H J. 1991. Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics, 11, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Lambie, E J, and Roder, G S. 1986. Repression of meiotic crossing over by a centromere (Cen3) in Saccharomyces cerevisiae. Genetics, 114, 769–789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapitan, N L V, Sears, R G, Rayburn, A L, and Gill, B S. 1986. Wheat-rye translocations detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J Hered, 77, 415–419.

    Article  Google Scholar 

  • Lazarus, C M, Baulcombe, D C, and Martienssen, R A. 1985. α-amylase genes of wheat are two multigene families which are differentially expressed. Plant Mol Biol, 5, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Lefevre, G. Jr. 1971. Salivary chromosome bands and the frequency of crossing over in Drosophila melanogaster. Genetics, 67, 497–513.

    PubMed  PubMed Central  Google Scholar 

  • Lehfer, H, Busch, W, Martin, R, and Herrmann, R. 1993. Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma, 102, 428–432.

    Article  Google Scholar 

  • Leitch, I J, and Heslop-Harrison, J S. 1992. Physical mapping of the 18S-5.8S-26S rrna genes in barley by in situ hybridization. Genome, 35, 1013–1018.

    Article  CAS  Google Scholar 

  • Mather, K. 1938. Crossing over and heterochromatin in the X chromosome of Drosophila melanogaster. Genetics, 24, 413–435.

    Google Scholar 

  • McCouch, S R, Kochert, G, Yu, Z H, Wang, Z Y, Khush, G S, Coffman, W R, and Tanksley, S D. 1988. Molecular mapping of rice chromosomes. Theor Appl Genet, 76, 815–829.

    Article  CAS  PubMed  Google Scholar 

  • Meyne, J, Baker, R J, Hobart, H H, Hsu, T C, Ryder, O A, Ward, O G, Wiley, J E, Wurster-Hill, D H, Yates, T L, and Moyzis, R K. 1990. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma, 99, 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Mukai, Y, Endo, T R, and Gill, B S. 1990. Physical mapping of the 5S rrna multigene family in common wheat. J Hered, 81, 290–295.

    Article  CAS  Google Scholar 

  • Mukai, Y, Endo, T R, and Gill, B S. 1991. Physical mapping of the 18S.26S rrna multigene family in common wheat: Identification of a new locus. Chromosoma, 100, 71–78.

    Article  CAS  Google Scholar 

  • Naranjo, T, Roca, A, Goicoechea, P G, and Giraldez, R. 1987. Arm homoeology of wheat and rye chromosomes. Genome, 29, 873–882.

    Article  Google Scholar 

  • Phillips, R L. 1969. Recombination in Zea mays L. I. Location of genes and interchanges in chromosomes 5, 6, and 7. Genetics, 61, 107–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayburn, A L, and Gill, B S. 1985. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered, 76, 78–81.

    Article  Google Scholar 

  • Rick, C M. 1971. Some cytogenetic features of the genome in diploid plant species. In: Kimber, G. and Redei, G. P. (eds) Stadler Genetic Symposium, pp. 153–154. University of Missouri Press, Columbia, MO.

    Google Scholar 

  • Ricroch, A, Peffley, E B, and Baker, R J. 1992. Chromosomal location of rdna in Allium: in situ hybridization using biotin- and fluorescein-labelled probe. Theor Appl Genet, 83, 413–418.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, P A. 1965. Difference in the behaviour of eu- and hetero-chromatin: crossing over. Nature, 205, 725–726.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher, T, and Heslop-Harrison, J S. 1991. In situ hybridization to plant telomeres using synthetic oligomers. Genome, 34, 317–323.

    Article  Google Scholar 

  • Sharp, P J, Chao, S, Desai, S, and Gale, M D. 1989. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet, 78, 342–348.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley, S D, McCouch, S, Yu, Z, Wang, Z, and Fulton, S. 1989. RFLP map of rice chromosomes. Rice Genet Newsl, 5, 128–130.

    Google Scholar 

  • Tanksley, S D, Ganal, M W, Prince, J P, De Vicente, M C, Bonierbale, M W, Broun, P, Fulton, T M, Giovannoni, J J, Grandillo, S, Martin, G B, Messeguer, R, Miller, J C, Miller, L, Paterson, A H, Pineda, O, Röder, M S, Wing, R A, Wu, W, and Young, N D. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimoto, H, and Noda, K. 1990. Deletion mapping by gameto-cidal genes in common wheat: position of speltoid suppression (Q) and beta-amylase (beta-Amy-A2) genes on chromosome 5. Genome, 33, 850–853.

    Article  CAS  Google Scholar 

  • Wang, M L, Atkinson, M D, Chinoy, C N, Devos, K M, Harcourt, R L, Lui, C J, Rogers, W J, and Gale, M D. 1991. RFLP- based genetic map of rye (Secale cereale L.) chromosome 1R. TheorAppl Genet, 82, 174–178.

    Article  CAS  Google Scholar 

  • Weide, R, Wordragen, M E, Lankhorst, R K, Verkerk, R, Hanhart, C, Liharska, T, Pap, E, Stamm, P, Zabel, P, and Koornneef, M. 1993. Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics, 135, 1175–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werner, J E, Endo, T R, and Gill, B S. 1992. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA, 89, 11307–11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J, and Kasha, K J. 1992. Identification of a barley chromosomal interchange using N-banding and in situ hybridization techniques. Genome, 35, 392–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Agronomy, Jiangsu Agricultural College, Yangzhou, 225001, China

    J M Chen

  2. U.S.D.A., Agricultural Research Service, Plant Genetics Research Unit, and Plant Science Unit, University of Missouri, Columbia, 65211, Missouri, USA

    J P Gustafson

Authors
  1. J M Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. J P Gustafson
    View author publications

    Search author on:PubMed Google Scholar

Additional information

This paper reports the results of research only; mention of a proprietary product does not constitute an endorsement or a recommendation for its use by the USDA or the University of Missouri. This paper is a contribution of the U.S. Department of Agriculture, Agricultural Research Service, and Missouri Agricultural Experimental Station, Journal Series No. 11,888.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Gustafson, J. Physical mapping of restriction fragment length polymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridization. Heredity 75, 225–233 (1995). https://doi.org/10.1038/hdy.1995.130

Download citation

  • Received: 12 September 1994

  • Issue date: 01 September 1995

  • DOI: https://doi.org/10.1038/hdy.1995.130

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • biotin
  • in situ hybridization
  • labelling
  • RFLPs
  • Triticum aestivum

This article is cited by

  • Introgression mapping in the grasses

    • Julie King
    • Ian P. Armstead
    • Ian P. King

    Chromosome Research (2007)

  • Physical location of the ricePi-5(t), Glh andRTSV genes by ISH of BAC clones

    • Yan Huimin
    • Song Yunchun
    • Fu Binying

    Wuhan University Journal of Natural Sciences (1998)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited