Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae)
Download PDF
Download PDF
  • Original Article
  • Published: 01 September 1995

Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae)

  • Denson K McLain1,
  • Dawn M Wesson2 nAff3,
  • Frank H Collins2 &
  • …
  • James H Oliver Jr1 

Heredity volume 75, pages 303–319 (1995)Cite this article

  • 1103 Accesses

  • 49 Citations

  • Metrics details

Abstract

Evolution of the rDNA spacer, ITS 2, is examined by comparing 17 DNA sequences of the ticks, Ixodes scapularis and I. pacificus. The distribution of fixed interspecific differences and the relative frequency of base changes vs. insertions/deletions (indels) matches the distribution and relative frequency for intraspecifically variable sites. This suggests that most intraspecific variation is not effectively selected against. The base composition of the ITS 2 transcript is G- and U-biased. But, 5-base regions enriched (> 80 per cent) for A or U occur more frequently than expected while G-and C-enriched regions occur less frequently than expected. Enriched sequences may be prone to replication slippage, accounting for the A/T bias in insertions. Slippage-mediated gains and losses of A/T-rich tandem repeats apparently account for most indels. Minimum-energy conformations of the two species' folded transcripts share major structural features. Structural inertia arises from intramolecular base pairing within stems that allows most mutations to be absorbed as new bulges off stems. Yet, there is evidence of selection to maintain the conformation. First, intraspecifically variable sites are concentrated at the ends of stems in loops and intersections, structures that do not contribute to intramolecular base pairing. Moreover, some indels that have become fixed in one species compensate for the presence of conformation-destabilizing indels. However, high rates of sequence evolution within stems and absence of compensatory base evolution contraindicates selective constraint. Degenerate dispersed and tandem copies of two subrepeats, each approximately 20 bases long, may account for much of the ITS 2 sequence. These are approximate inverses of each other and are, consequently, capable of significant intramolecular hydrogen bonding to produce folded transcripts of low energy. Evolution of the ITS 2 sequence may largely entail replication slippage-mediated gains and losses of these repeats or their composite subrepeats.

Similar content being viewed by others

A high-quality Ixodes scapularis genome advances tick science

Article 19 January 2023

Conserved long-range base pairings are associated with pre-mRNA processing of human genes

Article Open access 16 April 2021

Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase

Article Open access 31 March 2022

Article PDF

References

  • Amstutz, H, Munz, P, Heyer, W-D, Leupold, U, and Kohli, J. 1985. Concerted evolution of tRNA genes: intergenic conversion among three unlinked serine trna genes in S. pombe. Cell, 40, 879–886.

    Article  CAS  PubMed  Google Scholar 

  • Arnheim, N, Krystal, M, Schmickel, R, Wilson, G, Ryder, O, and Zimmer, E. 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA, 77, 7323–7327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnheim, N, Treco, D, Taylor, B, and Eicker, E M. 1982. Distribution of ribosomal gene length variants among mouse chromosomes. Proc Natl Acad Sci USA, 79, 4677–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckingham, K. 1982. Insect rDNA. Cellnucl, 10, 205–263.

    CAS  Google Scholar 

  • Boncinelli, E, Borhese, A, Graziani, E, La Mantia, G, Manzi, A, Miriani, C, and Simeone, A. 1983. Inheritance of the rDNA spacer in D. melanogaster. Mol Gen Genet, 189, 370–374.

    Article  CAS  Google Scholar 

  • Brimacombe, R, Maly, P, and Zwieb, C. 1983. The structure of ribosomal RNA and its organization relative to ribosomal protein. Nucl Acids Res Mol Biol, 28, 1–48.

    CAS  Google Scholar 

  • Coen, E, Strachan, T, and Dover, G A. 1982. Dynamics of concerted evolution of ribosonal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol, 158, 17–35.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, M P, King, L M, and Kellogg, E A. 1994. Slipped- strand mispairing in a plastid gene: rpo C2 in grasses (Poaceae). Mol Biol Evol, 11, 1–8.

    CAS  PubMed  Google Scholar 

  • Curtis, D, and Bender, W. 1991. Gene conversion in Drosophila and the effects of the meiotic mutants mei-9 and mei-218. Genetics, 127, 739–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dallas, J F, Barton, N H, and Dover, G A. 1988. Interracial rDNA variation in the grasshopper, Podisma pedestris. Mol Biol Evol, 5, 660–674.

    CAS  Google Scholar 

  • Devereux, J, Haeberli, P, and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res, 12, 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dover, G A. 1982. Molecular drive: a cohesive mode of species evolution. Nature, 299, 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Dover, G A. 1986. Molecular drive in multigene families: how biological novelties arise, spread, and are assimilated. Trends Genet, 2, 159–165.

    Article  CAS  Google Scholar 

  • Dover, G A. 1989. Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics, 122, 249–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dover, G A, Brown, S, Coen, E S, Dallas, J, Strachan, T, and Trick, M. 1982. The dynamics of genome evolution and species differentiation. In: Dover, G. A. and Flavell, R. B. (eds) Genome Evolution, pp. 343–372. Academic Press, New York.

    Google Scholar 

  • Freier, S M, Kierzek, R, Jaeger, J A, Subimoto, N, Caruthers, M H, Neilson, T, and Turner, D H. 1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA, 83, 9373–9977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara, H, and Ishikawa, H. 1986. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucl Acids Res, 14, 6393–6401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbi, S A. 1985. Evolution of ribosonal DNA. In: Maclntyre, R. J. (ed.) Molecular Evolutionary Genetics, pp. 419–517. Plenum, New York.

    Chapter  Google Scholar 

  • Gillings, M R, Frankham, R, Speirs, J, and Whalley, M. 1987. X.- Y exchange and the coevolution of the X and Y rDNA arrays in Drosophila melanogaster. Genetics, 116, 241–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, I L, Gorski, J L, Campen, T J, Dorney, D J, Erickson, J M, Sylvester, J E, and Schmickel, R D. 1985. Variation among human 28S ribosonal RNA genes. Proc Natl Acad Sci USA, 82, 7666–7670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock, J M, and Dover, G A. 1988. Molecular coevolution among cryptically simple expansion segments in eukaryotic 26S/28S rRNA. Mol Biol Evol, 5, 377–392.

    CAS  PubMed  Google Scholar 

  • Hancock, J M, Tautz, D, and Dover, G A. 1988. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol, 5, 393–414.

    CAS  PubMed  Google Scholar 

  • Hassouna, N, Michot, B, and Bachellerie, J-P. 1984. The complete nucleotide sequence of mouse 28S rRNA: implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl Acids Res, 12, 3563–3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keirans, J E, Oliver, J H, and Needham, G R. 1992. The Ixodes ricinus/persulcatus complex defined. In: Mundetloh, U. G. and Kurtti, T. J. (eds) First International Conference on Tick-Borne Pathogens at the Host-Vector Interface, p. 302. University of Minnesota, St. Paul.

    Google Scholar 

  • Lachance, M-A. 1990. Ribosomal DNA spacer variation in the cactophilic yeast Clavispora opuntiae. Mol Biol Evol, 7, 178–193.

    CAS  Google Scholar 

  • Larson, A, and Wilson, A C. 1989. Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol, 6, 131–154.

    PubMed  Google Scholar 

  • Levinson, G, and Gutman, G A. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol, 4, 203–221.

    CAS  PubMed  Google Scholar 

  • Livak, K. 1984. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics, 107, 611–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohe, A R, and Roberts, P A. 1990. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rDNA genes. Genetics, 125, 399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyckegaard, E M S, and Clark, A G. 1991. Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. Mol Biol Evol, 8, 458–474.

    CAS  PubMed  Google Scholar 

  • Maddern, R H. 1981. Exchange between ribosomal RNA genes of X and Y chromosomes in Drosophila melanogaster males. Genet Res, 38, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • McLain, D K, Wesson, D M, Oliver, J H. Jr, and Collins, F H. 1995. Variation in rDNA ITS 1 among eastern populations of Ixodes scapularis (Acari: Ixodidae). J Med Entomol, 32, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Michot, B, and Bachellerie, J-P. 1987. Comparisons of large subunit rRNAs reveal eukaryote-specific elements of secondary structure. Biochemie, 69, 11–23.

    Article  CAS  Google Scholar 

  • Mullis, K B, Faloona, F A, Scharf, S J, Saiki, R K, Horn, G T, and Erlich, H A. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol, 51, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, T. 1983. On the evolution of multigene families. Theor. Pop Biol, 23, 216–240.

    Article  CAS  Google Scholar 

  • Ohta, T, and Dover, G A. 1984. The cohesive population genetics of molecular drive. Genetics, 108, 501–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver, J H. Jr. Owsley, M R, Hutcheson, H J, James, A M, Chen, C, Irby, W S, Dotson, E M, and McLain, D K. 1993. Con-specificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae). J Med Entomol, 30, 54–63.

    Article  PubMed  Google Scholar 

  • Olsen, G J, McCarrol, R, and Sogin, M L. 1983. Secondary structure of Dictyostelium discoideum small subunit ribosomal RNA. Nucl Acids Res, 11, 8037–8049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paskewitz, S M, Wesson, D M, and Collins, F H. 1993. The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol, 2, 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, R, Rothblum, L I, Subrahmanyam, C S, Liu, M-H, Henning, D, Sidy, B, and Busch, H. 1983. The nucleotide sequence of 8S RNA bound to preribosomal RNA of Novikoff hepatoma. J Biol Chem, 258, 584–589.

    CAS  PubMed  Google Scholar 

  • Robbins, L G, and Swanson, E E. 1988. Rex-induced recombination implies bipolar organization of the ribosomal RNA genes of Drosophila melanogaster. Genetics, 120, 1053–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J, Fritsch, E F, and Maniatis, T. 1989. Molecular Cloning. Cold Spring Harbor Press, Plainview, NY.

    Google Scholar 

  • Sanger, F, Nicklen, S, and Coulsen, A R. 1977. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA, 74, 5464–5468.

    Article  Google Scholar 

  • Savino, R, and Gerbi, S A. 1990. In vivo disruption of Xenopus U3 snrna affects ribosomal RNA processing. EMBO J, 9, 2299–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielman, A, Clifford, C M, Piesman, J, and Corwin, M D. 1979. Human babesiosis on Nantucket Island, USA: description of the vector, Ixodes (Ixodes) dammini, n. sp. (Acarina: Ixodidae). J Med Entomol, 15, 218–234.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, D T, and Baker, A J. 1994. Patterns of sequence variation in the mitochondrial D-loop region of shrews. Mol Biol Evol, 11, 9–21.

    CAS  PubMed  Google Scholar 

  • Strachan, T, Webb, D, and Dover, G A. 1985. Transition stages of molecular drive in multi-copy DNA families in Drosophila. EMBO J, 4, 1701–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz, D, Hancock, J M, Webb, D A, Tautz, C, and Dover, G A. 1988. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol, 5, 366–376.

    CAS  PubMed  Google Scholar 

  • Tautz, D, Tautz, C, Webb, D, and Dover, G A. 1987. Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species: implications for molecular coevolution in multigene families. J Mol Biol, 195, 525–542.

    Article  CAS  PubMed  Google Scholar 

  • Thweatt, R, and Lee, J C. 1990. Yeast precursor ribosomal RNA: molecular cloning and probing the higher-order structure of the internal transcribed spacer 1 by kethoxal and dimethylsulfate modification. J Mol Biol, 211, 305–320.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J B. 1987. Persistence of tandem arrays: implications for satellite and simple-sequence DNAS. Genetics, 115, 553–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ware, V C, Tague, B W, Clark, C C, Gourse, R L, Brand, R C, and Gerbi, S A. 1983. Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis. Nucl Acids Res, 11, 7795–7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesson, D M, and Collins, F H. 1992. Sequence and secondary structure of 5.8S rRNA in the tick, Ixodes scapularis. Nucl Acids Res, 20, 1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesson, D M, McLain, D K, Oliver, J H, Piesman, J, and Collins, F H. 1993. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc Natl Acad Sci USA, 90, 10221–10225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesson, D M, Porter, C H, and Collins, F H. 1992. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol Phylogen Evol, 1, 253–269.

    Article  CAS  Google Scholar 

  • Williams, S M, Kennison, J A, Robbins, L G, and Strobeck, C. 1989. Reciprocal recombination and the evolution of the ribosomal gene family of Drosophila melanogaster. Genetics, 122, 617–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh, L-C C, and Lee, J C. 1990. Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol, 211, 699–712.

    Article  CAS  PubMed  Google Scholar 

  • Zuker, M, and Steigler, P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res, 9, 133–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Author notes
  1. Dawn M Wesson

    Present address: School of Public Health & Tropical Medicine, Tulane University, 1501 Canal Street, Suite 505, New Orleans, LA, 70122, U.S.A.

Authors and Affiliations

  1. Department of Biology & Institute of Arthropodology & Parasitology, Georgia Southern University, Statesboro, 30460-8042, GA, USA

    Denson K McLain & James H Oliver Jr

  2. Malaria Branch, DPD, CID, Centers for Disease Control, 1600 Clifton Road, C-22, Atlanta, 30333, GA, USA

    Dawn M Wesson & Frank H Collins

Authors
  1. Denson K McLain
    View author publications

    Search author on:PubMed Google Scholar

  2. Dawn M Wesson
    View author publications

    Search author on:PubMed Google Scholar

  3. Frank H Collins
    View author publications

    Search author on:PubMed Google Scholar

  4. James H Oliver Jr
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLain, D., Wesson, D., Collins, F. et al. Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae). Heredity 75, 303–319 (1995). https://doi.org/10.1038/hdy.1995.139

Download citation

  • Received: 16 January 1995

  • Issue date: 01 September 1995

  • DOI: https://doi.org/10.1038/hdy.1995.139

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • compensatory base evolution
  • concerted evolution
  • ITS 2
  • replication slippage
  • sub-repeats
  • tick

This article is cited by

  • Molecular characterization of Ribosomal DNA (ITS2) of hard ticks in Iran: understanding the conspecificity of Dermacentor marginatus and D. niveus

    • Parisa Soltan-Alinejad
    • Zahra Ramezani
    • Ali Reza Chavshin

    BMC Research Notes (2020)

  • Comparative vector competence of North American Lyme disease vectors

    • Lisa I. Couper
    • Youyun Yang
    • Andrea Swei

    Parasites & Vectors (2020)

  • Secondary structure of the internal transcribed rDNA (ITS) regions of Cosmopolites sordidus (Germar) and Odoiporus longicollis (Olivier): a first report in family Curculionidae

    • Lalitha Sunil Kumar

    International Journal of Tropical Insect Science (2019)

  • Species identification of Ixodes granulatus (Acari: Ixodidae) based on internal transcribed spacer 2 (ITS2) sequences

    • Li-Lian Chao
    • Wen-Jer Wu
    • Chien-Ming Shih

    Experimental and Applied Acarology (2011)

  • Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris

    • P Veltsos
    • I Keller
    • R A Nichols

    Heredity (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited