Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Evidence for somatic translocation during potato dihaploid induction
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1995

Evidence for somatic translocation during potato dihaploid induction

  • M J Wilkinson1,
  • S T Bennett2 nAff3,
  • S A Clulow1,
  • J Allainguillaume1,
  • K Harding1 &
  • …
  • M D Bennett2 

Heredity volume 74, pages 146–151 (1995)Cite this article

  • 1613 Accesses

  • 49 Citations

  • Metrics details

Abstract

Potato dihaploid PDH55 (Solanum tuberosum) is exclusively euploid (2n = 24) but apparently contains and expresses DNA from dihaploid inducer IVP48 (S. phureja). Genomic in situ hybridization (GISH) suggested IVP48 DNA incorporated stably into PDH55 by somatic translocation. This finding has two important implications. Firstly, the long-held implicit assumption that euploid dihaploids produced by dihaploid inducers are pure S. tuberosum seems incorrect. This may complicate meiotic, genetical and molecular studies involving potato dihaploids. Secondly, if such translocations are not rare, the phenomenon may offer a novel way to introduce useful traits directly from wild dihaploid-inducing species into S. tuberosum.

Similar content being viewed by others

Genome evolution and diversity of wild and cultivated potatoes

Article Open access 08 June 2022

Leveraging a phased pangenome for haplotype design of hybrid potato

Article Open access 22 January 2025

Phenotypic, molecular and biochemical evaluation of somatic hybrids between Solanum tuberosum and S. bulbocastanum

Article Open access 16 March 2022

Article PDF

References

  • Anamthawat-Jónsson, K, Schwarzacher, T, Leitch, A R, Bennett, M D, and Heslop-Harrison, J S. 1990. Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet, 79, 721–728.

    Article  PubMed  Google Scholar 

  • Bennett, S T, Kenton, A Y, and Bennett, M D. 1992. Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma, 101, 420–424.

    Article  Google Scholar 

  • Bonierbale, M W, Plaisted, R L, and Tanksley, S T. 1988. RFLP maps based on a common set of clones reveal modes of chromosome evolution in potato and tomato. Genetics, 120, 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budin, K Z. 1969. Obtaining potato dihaploids. Genetika, 5, 42–50.

    Google Scholar 

  • Bukai, J. 1968. Production of dihaploid forms of Solanum tuberosum. Rep All-Un Lenin Acad Agric Sci, 7, 14–17.

    Google Scholar 

  • Chase, S E. 1963. Analytical breeding of Solanum tuberosum: a scheme utilizing parthenotes and other diploid stocks. Can J Genet Cytol, 5, 359–363.

    Article  Google Scholar 

  • Clulow, S A, Wilkinson, M J, and Burch, L R. 1993. Solanum phureja genes are expressed in the leaves and tubers of aneusomatic potato dihaploids. Euphytica, 69, 1–6.

    Article  Google Scholar 

  • Clulow, S A, Wilkinson, M J, Waugh, R, Baird, E, De Maine, M J, and Powell, W. 1991. Cytological and molecular observations on Solanum phureja-induced dihaploid potatoes. Theor Appl Genet, 82, 545–551.

    Article  CAS  PubMed  Google Scholar 

  • De Vries, S E, Ferwerda, M A, Loonen, A E H M, Pijnacker, L P, and Feenstra, W J. 1987. Chromosomes in somatic hybrids between Nicotiana plumbaginiFolia and a monoploid potato. Theor Appl Genet, 75, 170–176.

    Article  Google Scholar 

  • Doyle, J J, and Doyle, J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 19, 11–15.

    Google Scholar 

  • Gebhardt, C, Mugniery, D, Ritter, E, Salamini, F, and Bonnel, E. 1993. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theor Appl Genet, 85, 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg, S G, Lehhmann, L, and Hagberg, P. 1975. Segmental interchanges in barley. 1. Translocations involving chromosomes 5 and 6. Hereditas, 80, 73–82.

    Article  Google Scholar 

  • Harding, T. 1992. Detection of ribosomal RNA genes by chemiluminescence in Solanum tuberosum L: a rapid and nonradioactive technique for the characterisation of potato germplasm. Potato Res, 35, 199–204.

    Article  CAS  Google Scholar 

  • Hawkes, J G. 1990. The Potato: Evolution, Biodiversity and Genetic Resources. Belhaven, London, pp. 208–209.

    Google Scholar 

  • Heiner, R E, Konzak, C F, Nilan, R A, and Legault, R R. 1960. Diverse ratios of mutations to chromosome aberrations in barley treated with diethyl sulphate and gamma rays. Proc Natl Acad Sci USA, 46, 1215–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermsen, J G, The, and Verdenius, J. 1973. Selection from Solanum tuberosum Group Phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo spot. Euphytica, 22, 244–259.

    Article  Google Scholar 

  • Kenton, A, Parokonny, A S, Gleba, Y Y, and Bennett, M D. 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 240, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Lal, J, and Srinivasachar, D. 1979. Induction of segmental interchanges in pearl millet (Pennisetum typhides). Theor Appl Genet, 54, 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Marks, G E. 1955. A polyhaploid plant of Solanum poly trichon Rydb. Nature, 175, 469.

    Article  Google Scholar 

  • Meinkoth, J, and Wahl, G. 1984. Hybridization of nucleic acids immobilized on solid supports. Analyt Biochem, 138, 267–284.

    Article  CAS  PubMed  Google Scholar 

  • Montelongo-Escobedo, H, and Rowe, P R. 1969. Haploid induction in potato: cytological basis for the pollinator effect. Euphytica, 18, 116–123.

    Google Scholar 

  • Mukai, Y, Friebe, B, Hatchett, J H, Yamamoto, M, and Gill, B S. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 102, 88–95.

    Article  Google Scholar 

  • Ooms, G, Karp, A, Burrell, M M, Twell, D, and Roberts, J. 1985. Genetic modification of potato development using Ri T-DNA. Theor Appl Genet, 70, 440–446.

    Article  CAS  PubMed  Google Scholar 

  • Parokonny, A S, Kenton, A Y, Gleba, Y Y, and Bennett, M D. 1992. Genetic reorganisation in Nicotiana asymmetrical somatic hybrids analysed by in situ hybridization. Plant J, 2, 863–874.

    CAS  PubMed  Google Scholar 

  • Peloquin, S J, Werner, J E, and Yerk, G L. 1990. The USe of potato dihaploids in genetics and breeding. In: Tsuchiya, T. and Gupta, P. K. (eds) Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Part B, pp. 79–92. Elsevier, Amsterdam.

    Google Scholar 

  • Pijnacker, L P, Ferwerda, M A, Puite, K J, and Roest, S. 1987. Elimination of Solanum phureja nucleolar chromosomes in S. tuberosum + S. phureja somatic hybrids. Theor Appl Genet, 73, 878–882.

    Article  CAS  PubMed  Google Scholar 

  • Ross, H. 1986. Potato Breeding - Problems and Perspectives. Verlag Paul Parey, Berlin & Hamburg.

    Google Scholar 

  • Rowe, P R. 1974. Parthenogenesis following interspecific hybridization. In: Kasha, K. J. (ed.) Haploids in Higher Plants: Advances and Potential, pp. 43–53. University of Guelph, Guelph.

    Google Scholar 

  • Sambrook, J, Fritsch, E F, and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sosa-Chavez, R, and Hernandez De Sosa, M. 1971. Use of dihaploids in the breeding of Solanum tuberosum L. 1. Cytological considerations. Hereditas, 69, 83–100.

    Article  Google Scholar 

  • Wagenvoort, M. 1988. Spontaneous structural rearrangements in Solanum tuberosum ssp. phureja: 1. Chromosome identification at pachytene stage. Euphytica, Suppl., 159–167.

  • Waugh, R, Baird, E, and Powell, W. 1992. The use of RAPD markers for the detection of gene introgression in potato. Pl Cell Rep, 11, 466–469.

    Article  CAS  Google Scholar 

  • Wenzel, G, Schieder, O, Przewozny, T, Sopory, B K, and Melchers, G. 1979. Comparison of single cell culture derived Solanum tuberosum L. plants and a model for their application in breeding. Theor Appl Genet, 55, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • White, J, and Rees, H. 1985. The chromosome cytology of a somatic hybrid petunia. Heredity, 55, 53–59.

    Article  Google Scholar 

  • Williams, C E, Hunt, G J, and Helgeson, J P. 1990. Fertile somatic hybrids of Solanum species: RFLP analysis of a hybrid and its sexual progeny from crosses with potato. Theor Appl Genet, 80, 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Visser, R G F, Hesseling-Meinders, A, Jacobsen, E, Nijdam, H, Witholt, B, and Feenstra, W J. 1989. Expression and inheritance of inserted markers in binary vector carrying Agrobacterium rhizogenes-transformed potato (Solanum tuberosumL.). Theor Appl Genet, 78, 705–714.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. S T Bennett

    Present address: Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, OX3 9LU, UK

Authors and Affiliations

  1. Scottish Crop Research Institute, Invergowrie, DD2 5DA, Dundee, UK

    M J Wilkinson, S A Clulow, J Allainguillaume & K Harding

  2. Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3AB, Richmond, UK

    S T Bennett & M D Bennett

Authors
  1. M J Wilkinson
    View author publications

    Search author on:PubMed Google Scholar

  2. S T Bennett
    View author publications

    Search author on:PubMed Google Scholar

  3. S A Clulow
    View author publications

    Search author on:PubMed Google Scholar

  4. J Allainguillaume
    View author publications

    Search author on:PubMed Google Scholar

  5. K Harding
    View author publications

    Search author on:PubMed Google Scholar

  6. M D Bennett
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, M., Bennett, S., Clulow, S. et al. Evidence for somatic translocation during potato dihaploid induction. Heredity 74, 146–151 (1995). https://doi.org/10.1038/hdy.1995.21

Download citation

  • Received: 19 April 1994

  • Issue date: 01 February 1995

  • DOI: https://doi.org/10.1038/hdy.1995.21

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • dihaploid induction
  • in situ hybridization
  • Solanum tuberosum
  • somatic interchange

This article is cited by

  • Molecular systematics and its role in cultivated Solanum spp. evolution

    • Vinaykumar Rachappanavar

    Genetic Resources and Crop Evolution (2023)

  • Phenotypic, molecular and biochemical evaluation of somatic hybrids between Solanum tuberosum and S. bulbocastanum

    • Petr Sedlák
    • Vladimíra Sedláková
    • Pavel Vejl

    Scientific Reports (2022)

  • Composition and random elimination of paternal chromosomes in a large population of wheat × barley (Triticum aestivum L. × Hordeum vulgare L.) hybrids

    • Dávid Polgári
    • Edit Mihók
    • László Sági

    Plant Cell Reports (2019)

  • Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross

    • Wesley G. Hancock
    • Vasu Kuraparthy
    • Ramsey S. Lewis

    Molecular Breeding (2015)

  • Production of Hybrids Between the 2EBN Bridge Species Solanum verrucosum and 1EBN diploid Potato Species

    • A. P. Yermishin
    • Yu. V. Polyukhovich
    • A. V. Savchuk

    American Journal of Potato Research (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited