Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L.
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1995

Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L.

  • J Lutz1,
  • S L K Hsam1,
  • E Limpert2 &
  • …
  • F J Zeller1 

Heredity volume 74, pages 152–156 (1995)Cite this article

  • 1984 Accesses

  • 73 Citations

  • Metrics details

Abstract

Two mildew resistant accessions of diploid Aegilops squarrosa and their hexaploid synthetics derived from crosses with mildew susceptible Triticum durum cultivars were tested with differential isolates of Erysiphe graminis f. sp. tritici and their responses were compared with the response patterns of 16 wheat cultivars or lines possessing known mildew resistance genes. Resistance in the A. squarrosa accession ‘Braunschweig BGRC 1458’ was conditioned by the dominant gene Pm2. This gene confers the same response pattern with a set of mildew isolates when present at the diploid species level or in a hexaploid synthetic with T. durum. It was located on wheat chromosome 5D. The resistance gene in the A. squarrosa accession ‘Gatersleben AE 457/78’ showed a different response pattern in the hexaploid synthetic line ‘XX 186’ tested with mildew isolates compared with that of the diploid. Its response pattern was also different from all other wheats with named genes for resistance to powdery mildew. The gene, localized on chromosome 7D in the synthetic ‘XX 186’, was designated Pm19.

Similar content being viewed by others

Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance

Article Open access 05 June 2024

Genome-edited powdery mildew resistance in wheat without growth penalties

Article 09 February 2022

Discovery of a novel powdery mildew (Blumeria graminis) resistance locus in rye (Secale cereale L.)

Article Open access 29 November 2021

Article PDF

References

  • Allard, R W, and Shands, R G. 1954. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevii. Phytopathology, 44, 266–274.

    Google Scholar 

  • Briggle, L W. 1966. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici. Crop Sci, 6, 461–465.

    Article  Google Scholar 

  • Briggle, L W. 1969. Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci, 9, 70–72.

    Article  Google Scholar 

  • Ceoloni, C, Del Signore, G, Ercoli, L, and Donini, P. 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas, 116, 239–245.

    Article  Google Scholar 

  • Cox, T S, Raupp, W J, Wilson, D L, Gill, B S, Leath, S, and Browder, L E. 1992. Resistance to foliar diseases in a collection of Triticum tauschii germ plasm. Plant Disease, 76, 1061–1064.

    Article  Google Scholar 

  • Driscoll, C J, and Anderson, L M. 1967. Cytogenetic studies of Transec — a wheat-rye translocation line. Can J Genet Cytol, 9, 375–380.

    Article  Google Scholar 

  • Frauenstein, K, and Hammer, T. 1985. Prüfung von Aegilops-Arten auf Resistenz gegen Echten Mehltau, Erysiphe graminis DC Braunrost, Puccinia recondita Rob. ex Desm., und Spelzenbräune, Septoria nodorum Berk. Kulturpflanze, 33, 155–163.

    Article  Google Scholar 

  • Friebe, B, Heun, M, Tuleen, N, Zeller, F J, and Gill, B S. 1994. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci, 34, 621–625.

    Article  Google Scholar 

  • Gill, B S, Raupp, W J, Sharma, H C, Brouder, L E, Hatchett, J H, Harvey, T L, Moseman, J G, and Waines, J G. 1986. Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug and Hessian fly. Plant Disease, 76, 553–556.

    Article  Google Scholar 

  • Heun, M, and Friebe, B. 1990. Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 80, 242–245.

    Article  Google Scholar 

  • Jaaska, V. 1981. Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Pl Syst Evol, 137, 259–273.

    Article  CAS  Google Scholar 

  • Jørgensen, J H, and Jensen, C J. 1972. Genes for resistance to wheat powdery mildew in derivatives of Triticum timopheevii and Triticum carthlicum. Euphytica, 21, 121–128.

    Article  Google Scholar 

  • Lagudah, E S, and Halloran, G M. 1988. Phylogenetic relationships of Triticum tauschii, the D genome donor to hexaploid wheat. 1. Variation in HMW subunits of glutenin. Theor Appl Genet, 75, 592–598.

    Article  CAS  Google Scholar 

  • Law, C N, and Wolfe, M S. 1966. Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol, 8, 462–470.

    Article  Google Scholar 

  • Lutz, J, Hsam, S L K, Limpert, E, and Zeller, F J. 1994. Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Res Crop Evol, 41, 151–158.

    Article  Google Scholar 

  • McIntosh, R A. Catalogue of gene symbols for wheat. In: Proceedings of 8th International Wheat Genetics Symposium, Beijing, China (in press).

  • McIntosh, R A, and Baker, E P. 1970. Cytogenetical studies in wheat. IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 19, 71–77.

    Article  Google Scholar 

  • Mains, E B. 1933. Host specialization of Erysiphe graminis tritici. Proc Natl Acad Sci USA, 19, 49–53.

    Article  CAS  Google Scholar 

  • Miller, T E, Reader, S M, Ainsworth, C C, and Summers, R W. 1988. The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici, from Aegilops speltoides into wheat, Triticum aestivum. In: Proceedings of the Conference Section EUCARPIA, pp. 179–183, Wageningen, The Netherlands.

    Google Scholar 

  • Nyquist, W E. 1963. Inheritance of powdery mildew resistance in hybrids involving a common wheat strain derived from Triticum timopheevii. Crop Sci, 3, 40–43.

    Article  Google Scholar 

  • Pasquini, M. 1980. Disease resistance in wheat. II. Behaviour of Aegilops species with respect to Puccinia recondita f. sp. tritici, Puccinia graminis f. sp. tritici, and Erysiphe graminis f. sp. tritici. Genet Agr, 34, 133–148.

    Google Scholar 

  • Pugsley, A T. 1961. Additional resistance in Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci, 14, 70–75.

    Article  Google Scholar 

  • Pugsley, A T, and Carter, M V. 1953. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci, 6, 335–346.

    Article  CAS  Google Scholar 

  • Qi, L L, Chen, P D, Liu, D J, Zhou, B, and Zhang, S Z. Development of translocation lines of Triticum aestivum with powdery mildew resistance introduced from Hayi aldia villosa L. In: Proceedings of the 8th International Wheat Genetics Symposium, Beijing, China (in press).

  • Reader, S M, and Miller, T E. 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 53, 57–60.

    Article  Google Scholar 

  • Sears, E R, and Briggle, L W. 1969. Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci, 9, 96–97.

    Article  Google Scholar 

  • The, T T, McIntosh, R A, and Bennett, E G A. 1979. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biol Sci, 32, 115–125.

    Article  Google Scholar 

  • Tosa, Y, and Sakai, K. 1991. Analysis of the resistance of Aegilops squarrosa to the wheatgrass mildew fungus by using the gene-for-gene relationship. Theor Appl Genet, 81, 735–739.

    Article  CAS  Google Scholar 

  • Valkoun, J, Dostal, J, and Kucerova, D. 1980. Triticum × Aegilops hybrids through embryo culture. In: Bajaj, Y. P. S. (ed.) Biotechnology in Agriculture and Forestry, 13, Wheat, pp. 152–166. Springer, Berlin.

    Google Scholar 

  • Valkoun, J, Hammer, K, Kucerova, D, and Bartos, P. 1985. Disease resistance in the genus Aegilops L.— stem rust, leaf rust, stripe rust and powdery mildew. Kulturpflanze, 33, 133–153.

    Article  Google Scholar 

  • Wang, R C, Dong, Y, and Zhou, R. 1993. Resistance to powdery mildew and barley yellow dwarf in perennial Triticeae species. Genet Res Crop Evol, 40, 171–176.

    Article  Google Scholar 

  • Zeller, F J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: Proceedings of the 4th International Wheat Genetics Symposium, Columbia, USA, pp. 209–221.

    Google Scholar 

  • Zeller, F J, and Fuchs, E. 1983. Cytologie und Krankheitsresistenz einer 1A/1R- und mehrerer 1B/1R- Weizen-Roggen-Translokationssorten. Z PflZücht, 90, 285–296.

    Google Scholar 

  • Zeller, F J, and Heun, M. 1985. The incorporation and characterization of powdery mildew resistance from Aegilops longissima in common wheat (T. aestivum L.) Theor Appl Genet, 71, 513–517.

    Article  CAS  Google Scholar 

  • Zeller, F J, Stephan, U, and Lutz, J. 1993. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L.). 1. Mlk and other alleles in Pm3 locus. Euphytica, 68, 223–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Technische Universität München, Institut für Pflanzenbau und Pflanzenzüchtung, Freising-Weihenstephen, D-85350, Germany

    J Lutz, S L K Hsam & F J Zeller

  2. Institut für Pflanzenwissenschaften, Zürich, 8092, Switzerland

    E Limpert

Authors
  1. J Lutz
    View author publications

    Search author on:PubMed Google Scholar

  2. S L K Hsam
    View author publications

    Search author on:PubMed Google Scholar

  3. E Limpert
    View author publications

    Search author on:PubMed Google Scholar

  4. F J Zeller
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, J., Hsam, S., Limpert, E. et al. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L.. Heredity 74, 152–156 (1995). https://doi.org/10.1038/hdy.1995.22

Download citation

  • Received: 22 April 1994

  • Issue date: 01 February 1995

  • DOI: https://doi.org/10.1038/hdy.1995.22

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Aegilops squarrosa
  • powdery mildew
  • resistance genes
  • synthetic amphiploid wheats
  • Triticum aestivum

This article is cited by

  • A diverse panel of 755 bread wheat accessions harbors untapped genetic diversity in landraces and reveals novel genetic regions conferring powdery mildew resistance

    • Rebecca Leber
    • Matthias Heuberger
    • Javier Sánchez-Martín

    Theoretical and Applied Genetics (2024)

  • Fighting wheat powdery mildew: from genes to fields

    • Bo Wang
    • Ting Meng
    • Pengtao Ma

    Theoretical and Applied Genetics (2023)

  • Fine mapping of two recessive powdery mildew resistance genes from Aegilops tauschii accession CIae8

    • Xiong Tang
    • Fangxiu Dai
    • Xiue Wang

    Theoretical and Applied Genetics (2023)

  • Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance

    • Shulin Xue
    • Shanshan Hu
    • Suoping Li

    Theoretical and Applied Genetics (2022)

  • Development and validation of gene-specific KASP markers for YrAS2388R conferring stripe rust resistance in wheat

    • Yanling Hu
    • Xuhui Huang
    • Lin Huang

    Euphytica (2021)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited