Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1995

The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations

  • E Betrán1,
  • J E Quezada-Díaz1,
  • A Ruiz1,
  • M Santos1 &
  • …
  • A Fontdevila1 

Heredity volume 74, pages 188–199 (1995)Cite this article

  • 768 Accesses

  • 14 Citations

  • Metrics details

Abstract

Chromosome polymorphism in Drosophila buzzatii is under selection but the genes responsible for the effect of the inversions on fitness are unknown. On the other hand, there is evidence for selection on several allozyme loci but the presence of paracentric inversions on the second chromosome, where most of the polymorphic loci are located, complicates the interpretation. Studies of the associations between allozymes and inversions are thus necessary to help understand the effect of selection at both the chromosomal and allozymic level. Until now this kind of information has only been available in D. buzzatii for two loci, Est-1 and Est-2, in Australian populations. Here we describe the genetic constitution of two Old World populations, Carboneras and Colera. Emphasis has been placed on the analysis of the linkage disequilibria between the second chromosome arrangements and three allozyme loci, Est-2, Pept-2 and Aldox, located on this chromosome. In addition, the recombination frequencies between the loci, and between the loci and the inversion breakpoints, have been estimated and a genetic map of the three loci has been produced. The two populations differ in allele and arrangement frequencies, as well as in the pattern of one-locus disequilibria. Est-2 and Aldox are associated with the second chromosome arrangements in both populations. On the other hand, Pept-2 is associated with the inversions in Colera but not in Carboneras. The gametic associations among the three loci are discussed taking into account the position of these loci on the chromosome map and the lack of recombination in the heterokaryotypes.

Similar content being viewed by others

Three-dimensional localization and tracking of chromosomal loci throughout the Escherichia coli cell cycle

Article Open access 05 November 2024

Phylogenetic insights into the genetic legacies of Hungarian-speaking communities in the Carpathian Basin

Article Open access 20 May 2024

Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean

Article Open access 22 June 2024

Article PDF

References

  • Backeberg, C. 1977. Cactus Lexicon Enumerative Diagnostica Cactaccearum. Blandford Press, Poole, England.

    Google Scholar 

  • Barbadilla, A, Ruiz, A, Santos, M, and Fontdevila, A. 1994. Mating pattern and fitness component analysis associated with inversion polymorphism in a natural population of Drosophila buzzatii. Evolution (in press).

  • Barbadilla, A, Quezada-Díaz, J E, Ruiz, A, Santos, M, and Fontdevila, A. 1991. The evolutionary history of Drosophila buzzatii. XVII. Double mating and sperm predominance. Genet Sel Evol, 23, 133–140.

    Article  PubMed Central  Google Scholar 

  • Barker, J S E. 1981. Selection at allozyme loci in cactophilic Drosophila. In: Gibson, J. B. and Oakeshott, J. G. (eds) Genetic Studies of Drosophila Populations. Proceedings of the 1979 Kiola Conference, pp. 161–184. Australian National University, Canberra.

    Google Scholar 

  • Barker, J S F, and East, P D. 1980. Evidence for selection following perturbation of allozyme frequencies in a natural population of Drosophila. Nature, 284, 166–168.

    Article  Google Scholar 

  • Barker, J S F, East, P D, and Christiansen, F B. 1989. Estimation of migration from a perturbation experiment in natural populations of Drosophila buzzatii Patterson & Wheeler. Biol J Linn Soc, 37, 311–334.

    Article  Google Scholar 

  • Barker, J S F, East, P D, and Weir, B S. 1986. Temporal and microgeographic variation in allozyme frequencies in a natural population of D. buzzatii. Genetics, 112, 577–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, J S F, Sene, F, East, M, and Pereira, M A Q R. 1985. Allozyme and chromosomal polymorphism of Drosophila buzzatii in Brazil and Argentina. Genetica, 67, 161–170.

    Article  Google Scholar 

  • Bennet, J H. 1954. On the theory of random mating. Ann Eugen, 18, 311–317.

    Google Scholar 

  • Betrán, E. 1992. Efecte del Polimorfisme d'Inversions i Allozímic sobre Caràcters Quantitatius en una Població de Drosophila buzzatii. Master's thesis, Universitat Autönoma de Barcelona.

    Google Scholar 

  • BMDP. 1988. Statistical Software. University of California Press, Berkeley.

  • Britton, N L, and Rose, J N. 1963. The Cactaceae. Dover Publications, New York.

    Google Scholar 

  • Charlesworth, B. 1974. Inversion polymorphism in a two-locus genetic system. Genet Res, 23, 259–280.

    Article  CAS  PubMed  Google Scholar 

  • Crow, J F, and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • CSS statisticaTM. 1991. Statsoft of Europe, Hamburg.

  • David, J R, and Bocquet, C. 1975. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature, 257, 588–590.

    Article  CAS  PubMed  Google Scholar 

  • David, J, and Tsacas, L. 1980. Cosmopolitan, subcosmopolitan and widespread species: different strategies within the Drosophilid family (Diptera). C R Soc Biogéogr, 57, 11–26.

    Google Scholar 

  • Edlant-Johnson, R C. 1971. Probability Models and Statistical Methods in Genetics. J. Wiley, New York.

    Google Scholar 

  • Fontdevila, A. 1981. Çuánto polimorfismo se pierde en la colonización? Simposia Genética y Ecol Especiación Animal, pp. 69–99. Universidad Simón Bolivar, Venezuela.

    Google Scholar 

  • Fontdevila, A. 1989. Founder effects in colonizing populations: the case of Drosophila buzzatii. In: Fontdevila, A. (ed.) Evolutionary Biology of Transient Unstable Populations, pp. 74–95. Springer, Berlin.

    Chapter  Google Scholar 

  • Fontdevila, A, Ruiz, A, Alonso, G, and Ocaña, J. 1981. The evolutionary history of Drosophila buzzatii. I. Natural chromosomal polymorphism in colonized populations of the Old World. Evolution, 35, 148–157.

    CAS  PubMed  Google Scholar 

  • Fontdevila, A, Ruiz, A, Ocaña, J, and Alonso, G. 1982. The evolutionary history of Drosophila buzzatii. II. How much has polymorphism changed in colonization? Evolution, 36, 843–851.

    CAS  PubMed  Google Scholar 

  • Gaffney, P M, Scott, T M, Koehn, R K, and Diehl, W J. 1990. Interrelations of heterozygosity, growth rate and heterozygote deficiencies in the Coot Clam, Mulinia lateralis. Genetics, 124, 687–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassón, E, Fanara, J J, Rodríguez, C, Vilardi, J C, Reig, O A, and Fontdevila, A. 1992. The evolutionary history of Drosophila buzzatii. XXIV. Second chromosome inversions have different average effects on thorax length. Heredity, 68, 557–563.

    Article  PubMed  Google Scholar 

  • Ishh, K, and Charlesworth, B. 1977. Associations between allozyme loci and gene arrangements due to hitch-hiking effects of new inversions. Genet Res, 30, 93–106.

    Article  Google Scholar 

  • Knibb, W R, and Barker, J S F. 1988. Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii. II. Spatial variation. Aust J Biol Sci, 41, 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Knibb, W R, East, P D, and Barker, J S F. 1987. Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii. I. Linkage disequilibria. Aust J Biol Sci, 40, 257–269.

    Article  Google Scholar 

  • Labrador, M, Naveira, H, and Fontdevila, A. 1990. Genetic mapping of the Adh locus in the repleta group of Drosophila by in situ hybridization. J Hered, 81, 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Lewontin, R C. 1964. The interaction of selection and linkage. I. General considerations: heterotic models. Genetics, 49, 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin, R C, and Kojima, K. 1960. The evolutionary dynamics of complex polymorphisms. Evolution, 14, 458–472.

    Google Scholar 

  • Loukas, M, and Krimbas, C B. 1980. Isozyme techniques in Drosophila subobscura. Drosoph Inf Serv, 55, 157–158.

    Google Scholar 

  • Loukas, M, Krimbas, C B, and Vergini, Y. 1979. The genetics of Drosophila subobscura populations. IX. Studies on linkage disequilibrium in four natural populations. Genetics, 93, 497–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montchamp-Moreau, C, and Katz, M. 1986. A theoretical analysis of linkage disequilibrium produced by genetic drift in Drosophila populations. Genet Res, 48, 161–166.

    Article  Google Scholar 

  • Nei, M, and Li, W. 1980. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet Res, 35, 65–83.

    Article  CAS  PubMed  Google Scholar 

  • Pamilo, P, and Varvio-Aho, S. 1994. Testing genotype frequencies of heterozygosities. Mar Biol, 79, 99–100.

    Article  Google Scholar 

  • Pereira, M A Q R, Vilela, C R, and Sene, F M. 1983. Notes on breeding and feeding sites of some species of the repleta group of the genus Drosophila (Diptera, Drosophilidae). Ciência e Cultura, 35, 1313–1319.

    Google Scholar 

  • Prevosti, A. 1955. Variacion geografica de caracteres cuantitativos en poblaciones británicas de Drosophila subobscura. Genét Ibér, VII, 3–44.

    Google Scholar 

  • Quezada-Díaz, J E. 1993. Estructura Poblacional y Patrón de Apareamientos de la Especie Cactófila Drosophila buzzatii. Ph.D. Thesis. Universitat Autònoma de Barcelona, Spain.

    Google Scholar 

  • Quezada-Díaz, J E, Santos, M, Ruiz, A, and Fontdevila, A. 1992. The evolutionary history of Drosophila buzzatii. XXV. Random mating in nature. Heredity, 63, 373–379.

    Article  Google Scholar 

  • Robinson, W P, Asmussen, M A, and Thomson, G. 1991. Three-locus systems impose additional constraints on pairwise disequilibria. Genetics, 129, 925–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, A. 1982. El Polimorfismo de Inversiones en Drosophila buzzatii. Ph.D. Thesis. Universidad de Santiago de Compostela. Santiago de Compostela, Spain.

    Google Scholar 

  • Ruiz, A, and Fontdevila, A. 1985. The evolutionary history of Drosophila buzzatii. VI. Adaptive chromosomal changes in experimental populations with natural substrates. Genetica, 66, 63–71.

    Article  Google Scholar 

  • Ruiz, A, Fontdevila, A, Santos, M, Seoane, M, and Torroja, E. 1986. The evolutionary history of Drosophila buzzatii. VIII. Evidence for endocyclic selection acting on inversion polymorphism in a natural population. Evolution, 40, 740–755.

    CAS  PubMed  Google Scholar 

  • Ruiz, A, Naveira, H, and Fontdevila, A. 1984. La historia evolutiva de Drosophila buzzatii. IV. Aspectos citogeneticos de su polimorfismo cromosomico. Genét Ibér, 36, 13–35.

    Google Scholar 

  • Ruiz, A, and Santos, M. 1989. Mating probability, body size, and inversion polymorphism in a colonizing population of Drosophila buzzatii. In: Fontdevila, A. (ed.) Evolutionary Biology of Transient Unstable Populations, pp. 96–113. Springer, Berlin.

    Chapter  Google Scholar 

  • Ruiz, A, Santos, M, Barbadilla, A, Quezada-Díaz, J E, Hasson, E, and Fontdevila, A. 1991. Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics, 128, 739–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, A, Santos, M, and Fontdevila, A. 1987. Differential response to environmental alcohol among second-chromosome arrangements in experimental populations of Drosophila buzzatii. Genetica, 75, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz, A, and Wasserman, M. 1993. Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity, 70, 582–596.

    Article  PubMed  Google Scholar 

  • Santos, M. 1994. Heterozygote deficiencies under Levene's population subdivision structure. Evolution (in press).

  • Santos, M, Ruiz, A, Barbadilla, A, Quezada-Díaz, J E, and Fontdevila, A. 1988. The evolutionary history of Drosophila buzzatii. XIV. Larger flies mate more often in nature. Heredity, 61, 255–262.

    Article  Google Scholar 

  • Santos, M, Ruiz, A, and Fontdevila, A. 1989. The evolutionary history of Drosophila buzzatii. XIII. Random differentiation as a partial explanation of chromosomal variation in a structured natural population. Am Nat, 133, 183–197.

    Article  Google Scholar 

  • Santos, M, Ruiz, A, Quezada-Díaz, J E, Barbadilla, A, and Fontdevila, A. 1992. The evolutionary history of Drosophila buzzatii. XX. Positive phenotypic covariance between field adult fitness components and body size. J Evol Biol, 5, 403–422.

    Article  Google Scholar 

  • Schafer, D J, Fredline, D K, Knibb, W R, Green, M M, and Baker, J S F. 1993. Genetics and linkage mapping of Drosophila buzzatii. J Hered, 84, 188–194.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Pop Biol, 12, 253–262.

    Article  CAS  Google Scholar 

  • Sokal, R R, Oden, N L, and Barker, J S F. 1987. Spatial structure in Drosophila buzzatii populations: simple and directional spatial autocorrelation. Am Nat, 129, 122–142.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. Freeman, New York.

    Google Scholar 

  • Wasserman, M. 1962. Cytological studies of the repleta group of the genus Drosophila. V. The mulleri subgroup. Studies in Genetics, II. Texas University Publishers, 6205, 119–134.

    Google Scholar 

  • Watt, A W. 1981. The genetics of temperature tolerance in Drosophila buzzatii. In: Gibson, J. B. and Oakeshott, J. G. (eds) Genetic Studies of Drosophila Populations. Proceedings of the 1979 Kiola Conference, pp. 139–146. Australian National University, Canberra.

    Google Scholar 

  • Weir, B S. 1990. Genetic Data Analysis. Sinauer, Sunderland, MA.

    Google Scholar 

  • Yamaguchi, O, Ichinose, M, Matsuda, M, and Mukai, T. 1980. Linkage disequilibrium in isolated populations of Drosophila melanogaster. Genetics, 96, 507–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T. 1977. The effects of overdominance on linkage in a multilocus system. Genetics, 86, 227–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zouros, E, and Krimbas, C B. 1973. Evidence for linkage disequilibrium maintained by selection in two natural populations of Drosophila subobscura. Genetics, 73, 659–674.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departement de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, 08193, Spain

    E Betrán, J E Quezada-Díaz, A Ruiz, M Santos & A Fontdevila

Authors
  1. E Betrán
    View author publications

    Search author on:PubMed Google Scholar

  2. J E Quezada-Díaz
    View author publications

    Search author on:PubMed Google Scholar

  3. A Ruiz
    View author publications

    Search author on:PubMed Google Scholar

  4. M Santos
    View author publications

    Search author on:PubMed Google Scholar

  5. A Fontdevila
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betrán, E., Quezada-Díaz, J., Ruiz, A. et al. The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations. Heredity 74, 188–199 (1995). https://doi.org/10.1038/hdy.1995.27

Download citation

  • Received: 05 May 1994

  • Issue date: 01 February 1995

  • DOI: https://doi.org/10.1038/hdy.1995.27

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • cactophilic Drosophila
  • chromosome inversions
  • colonization
  • Drosophila buzzatii
  • linkage disequilibrium

This article is cited by

  • Molecular Population Genetics of the α-Esterase5 Gene Locus in Original and Colonized Populations of Drosophila buzzatii and Its Sibling Drosophila koepferae

    • R. V. Piccinali
    • L. J. Mascord
    • E. Hasson

    Journal of Molecular Evolution (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited