Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Allozyme variability of brown trout (Salmo trutta L.) populations across the Rhenanian–Danubian watershed in southwest Germany
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1995

Allozyme variability of brown trout (Salmo trutta L.) populations across the Rhenanian–Danubian watershed in southwest Germany

  • Michael Riffel1,
  • Volker Storch1 &
  • Arnd Schreiber1 

Heredity volume 74, pages 241–249 (1995)Cite this article

  • 617 Accesses

  • 35 Citations

  • Metrics details

Abstract

Using horizontal agarose thin layer gel electrophoresis, 35 allozyme loci were screened in 233 brown trout (Salmo trutta L.) from 11 populations in southwest Germany across the Rhenanian-Danubian watershed. Polymorphism was found at 10 loci, with stocked populations exhibiting significantly increased polymorphism compared with unmanaged stocks (P = 0.219 vs. P = 0.132). Standard genetic distances between populations from different brooks averaged at D = 0.01. Of the total gene diversity of GST = 0.198, only a negligible amount partitioned between Rhenanian and Danubian drainages (GGT = 0.010). One biallelic locus, LDH-5*, indicated river-specific allele frequencies, with the allele LDH-5*105 being markedly more frequent within the Danubian drainage system. In contrast, LDH-5*100 was close to fixation in the Rhenanian populations. This locus suggests a phylogeographical relationship of Danubian trout from southwest Germany with brown trout from southeastern Europe rather than with conspecifics of adjacent Rhenanian origin.

Similar content being viewed by others

Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

Article Open access 03 December 2021

Temporal analysis shows relaxed genetic erosion following improved stocking practices in a subarctic transnational brown trout population

Article Open access 30 August 2021

Population genetics reveals divergent lineages and ongoing hybridization in a declining migratory fish species complex

Article 04 June 2022

Article PDF

References

  • Aebersold, P B, Winans, G A, Teel, D J, Milner, G B, and Utter, F M. 1987. Manual for starch gel electrophoresis: a method for the detection of genetic variation. NOAA Technical Report NMFS 61.

  • Allendorf, F W, Mitchell, N, Ryman, N, and Stahl, G. 1977. Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas, 86, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf, F W, Ryman, N, Stennek, A, and Stahl, G. 1976. Genetic variation in Scandinavian brown trout (Salmo trutta L.): evidence of distinct sympatric populations. Hereditas, 83, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Balon, E K. 1968. Notes on the origin and evolution of trouts and salmon with special reference to the Danubian trouts. VěstčslzemědMus, 32, 1–21.

    Google Scholar 

  • Barbat-Leterrier, A, Guyomard, R, and Krieg, F. 1989. Introgression between introduced domesticated strains and Mediterranean native populations of brown trout (Salmo trutta L.). Aquat Living Resour, 2, 215–223.

    Article  Google Scholar 

  • Bernatchez, L, Guyomard, R, and Bonhomme, F. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout populations. Mol Ecol, 1, 161–173.

    Article  CAS  PubMed  Google Scholar 

  • Borcherdt, C. 1991. Bundesrepublik Deutschland 5 Baden-Württemberg: eine geographische Landeskunde. Wissenschaftliche Buchgesellschaft, Darmstadt.

    Google Scholar 

  • Chakraborty, R, and Leimar, O. 1987. Genetic variation within a subdivided population. In: Ryman, N. and Utter, F. (eds) Population Generics and Fisheries Management pp. 89–120. University of Washington Press, Seattle and London.

    Google Scholar 

  • Daye, P G, and Garside, E T. 1979. Development and survival of embryos and alevins of the Atlantic salmon, Salmo salar, continuously exposed to acidic levels of pH, from fertilization. Can J Zool, 57, 1713–1718.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1989. PHYLIP: Phylogeny Inference Package (version 3.2). Cladistics, 5, 164–166.

    Google Scholar 

  • Ferguson, A. 1989. Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshwater Biol, 21, 35–46.

    Article  Google Scholar 

  • Garcia-Marin, J L, Jorde, P E, Ryman, N, Utter, F, and Pla, C. 1991. Management implications of genetic differentiation between native and hatchery populations of brown trout (Salmo trutta) in Spain. Aquaculture, 95, 235–249.

    Article  Google Scholar 

  • Guyomard, R, and Krieg, F. 1983. Electrophoretic variation in six populations of brown trout (Salmo trutta L.). Can J Genet Cytol, 25, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, K E, Ferguson, A, Taggart, J B, Tomasson, T, Walker, A, and Fahy, E. 1989. Post-glacial colonization of brown trout, Salmo trutta L.: Ldh-5 as a phylogeographic marker locus. J Fish Biol, 35, 651–664.

    Article  Google Scholar 

  • Hantke, R. 1993. Fluβgeschichte Mitteleuropas. Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • Harris, H, and Hopkinson, D A. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. American Elsevier, New York.

    Google Scholar 

  • Hauser, L, Beaumont, A R, Marshall, G T H, and Wyatt, R J. 1991. Effects of sea trout stocking on the population genetics of landlocked brown trout, Salmo trutta L., in the Conwy River system, North Wales, U.K. J Fish Biol, 39, (Suppl. A), 109–116.

    Article  Google Scholar 

  • Henry, T, and Ferguson, A. 1985. Kinetic studies on the lactate dehydrogenase (LDH-5) isozymes of the brown trout, Salmo trutta L. Comp Biochem Physiol, 82B, 95–98.

    CAS  Google Scholar 

  • Hindar, K, Ryman, N, and Utter, F. 1991. Genetic effects of cultured fish on natural populations. Can J Fish Aquat Sci, 48, 945–957.

    Article  Google Scholar 

  • Karakousis, Y, and Triantaphyllidis, C. 1990. Genetic structure and differentiation among Greek brown trout (Salmo trutta L.) populations. Heredity, 64, 297–304.

    Article  Google Scholar 

  • Krieg, F, and Guyomard, R. 1985. Population genetics of French brown trout (Salmo trutta L.): large geographical differentiation of wild populations and high similarity of domesticated stocks. Génét Sél Évol, 17, 225–242.

    Article  CAS  Google Scholar 

  • Lelek, A. 1988. Vorkommen, Taxonomie und Maßnahmen zur Erhaltung der Forelle Salmo trutta labrax Pallas 1811 in der NO-Türkei. Courier Forsch-Inst Senckenberg, 101, 1–44.

    Google Scholar 

  • Mader, M. 1978. Die Flußgeschichte des Neckars und das Wandern des Albtraufs. Veröff Naturschutz Landschaftspflege Bad-Württ 47/48, 443–507.

    Google Scholar 

  • Martinez, P, Arias, J, Castro, J, and Sanchez, L. 1993. Differential stocking incidence in brown trout (Salmo trutta) populations from Northwestern Spain. Aquaculture, 114, 203–216.

    Article  Google Scholar 

  • Møller Hansen, M, Loeschcke, V, Rasmussen, G, and Simonsen, V. 1993. Genetic differentiation among Danish brown trout (Salmo trutta) populations. Hereditas, 118, 177–185.

    Article  Google Scholar 

  • Moran, P, Pendas, A M, Garcia-Vazquez, E, and Izquierdo, J. 1991. Failure of a stocking policy, of hatchery reared brown trout, Salmo trutta L., in Asturias, Spain, detected using LDH-5* as a genetic marker. J Fish Biol, 39, 117–121.

    Article  Google Scholar 

  • Müller, H. 1956. Die Forellen Die einheimischen Forellen und ihre wirtschaftliche Bedeutung. Neue Brehmbücherei 164. A. Ziemsen Verlag, Wittenberg, Lutherstadt.

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, K, and Soulé, M. 1987. Genetical conservation of exploited fishes. In: Ryman, N. AND Utter, F. (eds) Population Genetics and Fisheries Management pp. 345–368. University of Washington Press, Seattle and London.

    Google Scholar 

  • Osinov, A G. 1984. Zoogeographical origins of brown trout, Salmo trutta (Salmonidae): data from biochemical genetic markers. J Ichthyol, 24, 10–23.

    Google Scholar 

  • Ryman, N. 1983. Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture, 33, 1–21.

    Article  Google Scholar 

  • Ryman, N, Allendorf, E W, and Stahl, G. 1979. Reproductive isolation with little genetic divergence in sympatric populations of brown trout (Salmo trutta). Genetics, 92, 247–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaal, B A, and Anderson, W W. 1974. An outline of techniques for starch gel electrophoresis of enzymes from American oyster Crassostrea virginica Gmelin. Georgia Marine Science Center Technical Report 74–3.

  • Shaklee, J B, Allendorf, F W, Morizot, D C, and Whitt, G S. 1990. Gene nomenclature for protein-coding loci in fish. Trans Am Fish Soc, 119, 2–15.

    Article  CAS  Google Scholar 

  • Skaala, O. 1992. Genetic population structure of Norwegian brown trout. J Fish Biol, 41, 631–646.

    Article  Google Scholar 

  • Taggart, J B, and Ferguson, A. 1986. Electrophoretic evaluation of a supplemental stocking programme for brown trout, Salmo trutta L. Aquaculture Fish Manage, 17, 155–162.

    Google Scholar 

  • Taggart, J, Ferguson, A, and Mason, F M. 1981. Genetic variation in Irish populations of brown trout (Salmo trutta L.): electrophoretic analysis of allozymes. Comp Biochem Physiol, 69B, 393–412.

    CAS  Google Scholar 

  • Wagner, G. 1963. Danubische und rheinische Abtragung im Neckar- und Tauberland. Ber dt Landesk, 31, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Zoologisches Institut I, Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, D-69120, Germany

    Michael Riffel, Volker Storch & Arnd Schreiber

Authors
  1. Michael Riffel
    View author publications

    Search author on:PubMed Google Scholar

  2. Volker Storch
    View author publications

    Search author on:PubMed Google Scholar

  3. Arnd Schreiber
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riffel, M., Storch, V. & Schreiber, A. Allozyme variability of brown trout (Salmo trutta L.) populations across the Rhenanian–Danubian watershed in southwest Germany. Heredity 74, 241–249 (1995). https://doi.org/10.1038/hdy.1995.37

Download citation

  • Received: 03 May 1994

  • Issue date: 01 March 1995

  • DOI: https://doi.org/10.1038/hdy.1995.37

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozyme polymorphism
  • phylogeography
  • resident brown trout
  • Salmo trutta L.
  • stocking

This article is cited by

  • Will the genomics revolution finally solve the Salmo systematics?

    • Christelle Tougard

    Hydrobiologia (2022)

  • Genetic variation in brown trout Salmo truttaacross the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm?

    • Estelle Lerceteau-Köhler
    • Ulrich Schliewen
    • Steven Weiss

    BMC Evolutionary Biology (2013)

  • Genetic Structure of Brown Trout (Salmo trutta) Populations from Turkey Based on Microsatellite Data

    • Serdal Arslan
    • Fevzi Bardakci

    Biochemical Genetics (2010)

  • Differences in levels of heterozygosity in populations of the common gudgeon (Gobio gobio, Cyprinidae) among adjacent drainages in Central Europe: an effect of postglacial range dynamics?

    • A Schreiber

    Heredity (2002)

  • Postglacial colonization of brown trout in Europe based on distribution of allozyme variants

    • Jose-Luis García-Marín
    • Fred M Utter
    • Carles Pla

    Heredity (1999)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited