Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The genetics of floral development differentiating two species of Mimulus (Scrophulariaceae)
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 1995

The genetics of floral development differentiating two species of Mimulus (Scrophulariaceae)

  • Charles B Fenster1 nAff2,
  • Pamela K Diggle1 nAff3,
  • Spencer C H Barrett1 &
  • …
  • Kermit Ritland1 

Heredity volume 74, pages 258–266 (1995)Cite this article

  • 1038 Accesses

  • 63 Citations

  • Metrics details

Abstract

Investigation of the developmental processes responsible for the evolution of the small-flowered, highly selfing Mimulus micranthus from its large-flowered, mixed-mating progenitor M. guttatus, revealed M. micranthus to have both a shorter duration and a higher rate of bud development. Hence flowers of M. micranthus can be considered as progenetic forms of M. guttatus. Genetic analysis of F1, F2 and backcross generations derived from the cross M. micranthus × M. guttatus provided no evidence for major gene control of development processes responsible for differentiating the two taxa. Furthermore, F2 segregation patterns suggest that duration and rate of development may be genetically independent of one another. Hence, the evolution of small-flowered selfing taxa in Mimulus may reflect selection for rapid development.

Similar content being viewed by others

Discrimination of Camellia cultivars using iD-NA analysis

Article Open access 17 October 2023

The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae

Article Open access 06 May 2021

Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)

Article Open access 29 November 2024

Article PDF

References

  • Ambros, V. 1988. Genetic basis for heterochronic variation. In: McKinney, M. L. (ed.) Heterochrony in Evolution pp. 269–285. Plenum Press, New York.

    Chapter  Google Scholar 

  • Carr, D E, and Fenster, C B. 1994. Levels of genetic variation and covariation for Mimulus (Scrophulariaceae) floral traits. Heredity, 72, 606–618.

    Article  Google Scholar 

  • Charlesworth, B. 1992. Evolutionary rates in partially self-fertilizing species. Am Nat, 140, 126–148.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, Lande, R, and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution, 36, 474–498.

    Article  PubMed  Google Scholar 

  • Cockerham, C C. 1986. Modifications in estimating the number of genes for a quantitative character. Genetics, 114, 659–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne, J A, and Lande, R. 1985. The genetic basis of species differences in plants. Am Nat, 126, 141–145.

    Article  Google Scholar 

  • Darwin, C. 1859. On the Origin of Species, 1st edn. John Murray, London. (Reprinted 1964, Harvard University Press, Cambridge, MA).

    Google Scholar 

  • Diggle, P K. 1992. Development and the evolution of plant reproductive characters. In: Wyatt, R. (ed.) Ecology and Evolution of Plant Reproduction: New Approaches pp. 326–355. Chapman and Hall, New York.

    Google Scholar 

  • Doebley, J, and Stec, A. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics, 129, 285–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley, J, and Stec, A. 1993. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics, 134, 559–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudash, M R, and Ritland, K. 1991. Multiple paternity and self-fertilization in relation to floral age in Mimulus guttatus (Scrophulariaceae). Am J Bot, 78, 1746–1753.

    Article  Google Scholar 

  • East, E M. 1916. Studies on size inheritance in Nicotiana. Genetics, 1, 164–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Efron, B, and Gong, G. 1983. A leisurely look at the bootstrap, the jackknife and cross-validation. Am Statist, 37, 36–48.

    Google Scholar 

  • Eldredge, N, and Gould, S J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T. J. M. (ed.), Models in Paleobiology pp. 82–115. Freeman, Cooper and Co., San Francisco.

    Google Scholar 

  • Falconer, D S. 1981. Introduction to Quantitative Genetics, 2nd edn. Longman, London and New York.

    Google Scholar 

  • Fenster, C B, and Ritland, K. 1992. Chloroplast DNA and isozyme diversity in two Mimulus species (Scrophulariaceae) with contrasting mating systems. Am J Bot, 79, 1440–1447.

    Article  CAS  Google Scholar 

  • Fenster, C B, and Ritland, K. 1994. The quantitative genetics of mating system divergence in the yellow monkeyflower species complex. Heredity, 73, 422–435.

    Article  Google Scholar 

  • Fisher, R A. 1958. The Genetical Theory of Natural Selection. Dover Publications, New York.

    Google Scholar 

  • Goldschmidt, R B. 1940. The Material Basis of Evolution. Yale University Press, New Haven, CT.

    Google Scholar 

  • Goodwin, R H. 1944. The inheritance of flowering time in a short-day species, Solidago sempervirens. Genetics, 29, 503–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb, L D. 1973. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeria. Am J Bot, 50, 545–553.

    Article  Google Scholar 

  • Gottlieb, L D. 1977. Electrophoretic evidence and plant systematics. Ann Mo Bot Gard, 64, 161–180.

    Article  Google Scholar 

  • Gottlieb, L D. 1981. Electrophoretic evidence and plant populations. In: Reinhold, L., Harborne, J. B and Swain, T (eds) Progress in Phytochemistry, vol. 7, pp. 1–46. Pergamon, Oxford.

    Google Scholar 

  • Gottlieb, L D. 1984. Genetics and morphological evolution in plants. Am Nat, 123, 681–709.

    Article  Google Scholar 

  • Gottlieb, L D. 1985. Reply to Coyne and Lande. Am Nat, 126, 146–150.

    Article  Google Scholar 

  • Gould, S J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Gould, S J. 1988. The uses of heterochrony. In: McKinney, M. L. (ed.) Heterochrony in Evolution, pp. 1–13. Plenum Press, New York.

    Google Scholar 

  • Guerrant, E O, Jr. 1988. Heterochrony in plants: The intersection of evolution, ecology and ontogeny. In: McKinney, M. L. (ed.) Heterochrony in Evolution, pp. 111–133. Plenum Press, New York.

    Chapter  Google Scholar 

  • Hill, J P, Lord, E M, and Shaw, R G. 1992. Morphological and growth rate differences among outcrossing and self-pollinating races of Arenaria uniflora (Caryophylaceae). J Evol Biol, 5, 559–573.

    Article  Google Scholar 

  • Holtsford, T P, and Ellstrand, N C. 1992. Genetic and environmental variation in floral traits affecting outcrossing rate in Clarkia tembloriensis (Onagraceae). Evolution, 46, 216–225.

    Article  PubMed  Google Scholar 

  • Humphreys, M O, and Nicholls, M K. 1984. Relationships between tolerance to heavy metals in Agrostis capillaries (= A. tenuis Sibth.). NewPhytol, 98, 177–190.

    Google Scholar 

  • Kacser, H, and Burns, J A. 1981. The molecular basis of dominance. Genetics, 97, 639–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser, S. 1935. The factors controlling shape and size in Capsicum fruits; a genetic and developmental analysis. Bull Torrey Bot Club, 62, 433–454.

    Article  Google Scholar 

  • Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics, 99, 541–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lande, R. 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity, 50, 47–65.

    Article  Google Scholar 

  • Lande, R, and Arnold, S J. 1983. The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  PubMed  Google Scholar 

  • Lord, E M, and Hill, J P. 1987. Evidence for heterochrony in the evolution of plant form. In: Raff, R. A. and Raff, E. C. (eds) Development as an Evolutionary Process, pp. 47–70. Alan R. Liss, New York.

    Google Scholar 

  • Macnair, M R, and Cumbes, Q J. 1989. The genetic architecture of interspecific variation in Mimulus. Genetics, 122, 211–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, D E, and Abbott, R J. 1982. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L.I. Evidence. Heredity, 48, 227–235.

    Article  Google Scholar 

  • Mather, K, and Jinks, J L. 1982. Biometrical Genetics, 3rd edn. Chapman and Hall, London.

    Book  Google Scholar 

  • Munz, P A, and Keck, D D. 1973. A California Flora and Supplement. University of California Press, Berkeley and Los Angeles.

    Google Scholar 

  • Orr, H A, and Coyne, J A. 1992. The genetics of adaptation: a reassessment. Am Nat, 140, 725–742.

    Article  CAS  PubMed  Google Scholar 

  • Ritland, K, and Jain, S. 1984. The comparative life histories of two annual Limnanthes species in a temporally variable environment. Am Nat, 124, 656–679.

    Article  Google Scholar 

  • Ritland, C, and Ritland, K. 1989. Variation of sex allocation among eight taxa of the Mimulus guttatus species complex. (Scrophulariaceae). Am J Bot, 76, 1731–1739.

    Article  Google Scholar 

  • Sawhney, V K. 1992. Floral mutants in tomato: development, physiology, and evolutionary implications. Can J Bot, 70, 701–707.

    Article  Google Scholar 

  • Schwarz-Sommer, Z, Huijser, P, Nacken, W, Saedler, H, and Sommer, H. 1991. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250, 931–936.

    Article  Google Scholar 

  • Shore, J S, and Barrett, S C H. 1990. Quantitative genetics of floral characters in homostylous Turnera ulmifolia var. angustifolia Willd. (Turneraceae). Heredity, 64, 105–112.

    Article  Google Scholar 

  • Sinnott, E W. 1935. Evidence for the existence of genes controlling shape. Genetics, 20, 12–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnott, E W. 1936. A developmental analysis of inherited shape differences in Cucurbit fruits. Am Nat, 70, 245–254.

    Article  Google Scholar 

  • Slatkin, M. 1987. Quantitative genetics of heterochrony. Evolution, 41, 799–811.

    Article  PubMed  Google Scholar 

  • Smith, H H. 1950. Developmental restrictions on recombinations in Nicotiana. Evolution, 4, 202–211.

    Article  Google Scholar 

  • Takhtajan, A. 1976. Neoteny and the origin of flowering plants. In: Beck, C. B. (ed.) Origin and Early Evolution of Angiosperms pp. 207–219. Columbia University Press, New York.

    Google Scholar 

  • Vickery, R K. 1978. Case studies in the evolution of species complexes in Mimulus. Evol Biol, 11, 405–507.

    Google Scholar 

  • Wright, S. 1968. Evolution and the Genetics of Populations vol 1, Genetic and Biometrie Foundations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations vol 4, Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wyatt, R. 1988. Phylogenetic aspects of the evolution of self-pollination. In: Gottlieb, L. D. and Jain, S. K. (eds) Plant Evolutionary Biology, pp. 109–131. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Zeng, Z-B, Houle, D, and Cockerham, C C. 1990. How informative is Wright's estimator of the number of genes affecting a quantitative character? Genetics, 126, 235–247.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Author notes
  1. Charles B Fenster

    Present address: Department of Botany, University of Maryland, College Park, Maryland, 20742-5815, USA

  2. Pamela K Diggle

    Present address: Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, CO, 30309-0334, USA

Authors and Affiliations

  1. Department of Botany, University of Toronto, Toronto, M5S 3B2, Canada, USA

    Charles B Fenster, Pamela K Diggle, Spencer C H Barrett & Kermit Ritland

Authors
  1. Charles B Fenster
    View author publications

    Search author on:PubMed Google Scholar

  2. Pamela K Diggle
    View author publications

    Search author on:PubMed Google Scholar

  3. Spencer C H Barrett
    View author publications

    Search author on:PubMed Google Scholar

  4. Kermit Ritland
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenster, C., Diggle, P., Barrett, S. et al. The genetics of floral development differentiating two species of Mimulus (Scrophulariaceae). Heredity 74, 258–266 (1995). https://doi.org/10.1038/hdy.1995.39

Download citation

  • Received: 05 May 1994

  • Issue date: 01 March 1995

  • DOI: https://doi.org/10.1038/hdy.1995.39

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • floral development
  • heterochrony
  • mating system
  • Mimulus

This article is cited by

  • How a heterostylous plant species responds to life on remote islands: a comparative study of the morphology and reproductive biology of Waltheria ovata on the coasts of Ecuador and the Galápagos Islands

    • Christina Bramow
    • Ida Hartvig
    • Marianne Philipp

    Evolutionary Ecology (2013)

  • Mimulus is an emerging model system for the integration of ecological and genomic studies

    • C A Wu
    • D B Lowry
    • J H Willis

    Heredity (2008)

  • Comparative floral morphometrics in day-flowering, night-flowering and self-pollinated Caryophylloideae (Agrostemma, Dianthus, Saponaria, Silene, and Vaccaria)

    • A. Jürgens

    Plant Systematics and Evolution (2006)

  • Genetic basis of speed of development in Senecio vulgaris L var. vulgaris, S. vulgaris ssp. denticulatus (O.F. Muell.) P.D. Sell, and Senecio vernalis Waldst. & Kit.

    • Hans Peter Comes
    • Joachim W Kadereit

    Heredity (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited