Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 1995

Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise

  • Didier Jollivet1,2,
  • Daniel Desbruyères2,
  • François Bonhomme3 &
  • …
  • Dario Moraga4 

Heredity volume 74, pages 376–391 (1995)Cite this article

  • 1088 Accesses

  • 41 Citations

  • Metrics details

Abstract

The alvinellid polychaetes, which live in the hottest part of the deep-sea hydrothermal environment, have a nested island-like distribution and locally are subjected to extinctions. They are sedentary and exhibit a peculiar reproductive behaviour and a development which may result in little or no planktonic stage (i.e. larval dispersal). The genetic variation within and among populations of the three main species (Alvinella pompejana, Alvinella caudata and Paralvinella grasslei) inhabiting vents along the East Pacific Rise was examined at a hierarchy of spatial scales using allozyme electrophoresis. The genetic diversity of P. grasslei is high (Ho = 0.24), about twice that of both the Alvinella species (Ho = 0.10). The three species show a strong tendency towards a heterozygote deficiency which systematically occurs at the same loci in nearly all the populations. These structures are particularly obvious in the genus Alvinella and might be explained by differential allozyme fitness. Populations display considerable genetic differentiation at the microgeographical scale, which could be explained by repeated founder effects in populations, but it varies from species to species according to their possible ability to be transported by crabs from vent to vent. However, the genetic variation among populations separated by at least 1000 km is of the same magnitude as that found within the 13°N/EPR segment. These results demonstrate that each species maintains its genetic identity along the oceanic rifts despite the evidence for founder effects. To explain this phenomenon, we hypothesize that in such a harsh environment, genetic drift in alvinellid populations could be balanced by a uniform selective pressure stemming from the vent chemistry.

Similar content being viewed by others

Genetic population structures of common scavenging species near hydrothermal vents in the Okinawa Trough

Article Open access 09 February 2023

Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean

Article Open access 22 June 2024

Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands

Article Open access 29 September 2022

Article PDF

References

  • Avise, J C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York, London.

    Book  Google Scholar 

  • Ayala, F J, Valentine, J W, Hedgecock, D, and Barr, L G. 1975. Deep-sea asteroids: high genetic variability in a stable environment. Evolution, 29, 203–212.

    Article  PubMed  Google Scholar 

  • Black, M B. 1991. Genetic (Allozyme) Variation in Vestimentifera (Ridgeia spp ) from Hydrothermal Vents of the Juan de Fuca Ridge (Northeast Pacific Ocean). M. Sc. Thesis, University of Victoria, Canada.

    Google Scholar 

  • Bonhomme, F, Belkhir, K, Mathieu, E, and Roux, M. 1993. GENETIX — Logiciel d'analyse des données en génétique des populations, version 0.0. Université des Sciences et Techniques du Languedoc, Montpellier, France.

  • Bristow, G A, and Vadas, S R L. 1991. Genetic variability in bloodworm (Glycera dibranchiata) populations in the Gulf of Maine. Mar Biol, 109, 311–319.

    Article  Google Scholar 

  • Brown, A H D. 1970. The estimation of Wright's fixation index from genotypic frequencies. Genetica, 41, 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Bucklin, A. 1988. Allozymic variability of Riflia pachyptila populations from the Galapagos Rift and 21°N hydrothermal vents. Deep-Sea Res, 35, 1759–1768.

    Article  Google Scholar 

  • Cherry, R, Desbruyères, D, Heyraud, M, and Nolan, C. 1992. High levels of natural radioactivity in hydrothermal vent polychaetes. C r Acad Sci Paris, sér III, 315, 21–26.

    CAS  Google Scholar 

  • Chevaldonné, P, Desbruyères, D, and Childress, J J. 1992. ... and some even hotter. Nature, 359, 593–594.

    Article  Google Scholar 

  • Chevaldonné, P, Desbruyères, D, and Le Haître, M. 1991. Time-series of temperature from three deep-sea hydrothermal vent sites. Deep-Sea Res, 38, 1417–1430.

    Article  Google Scholar 

  • Chevaldonné, P, and Jollivet, D. 1993. Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Mar Ecol Prog Ser, 95, 251–262.

    Article  Google Scholar 

  • Denis, F, Jollivet, D, and Moraga, D. 1993. Genetic separation of two allopatric populations of hydrothermal snails Alviniconcha spp. (Gastropoda) from two Southwestern Pacific back-arc basins. Biochem Syst Ecol, 21, 431–440.

    Article  CAS  Google Scholar 

  • Desbruyères, D, and Laubier, L. 1980. Alvinella pompejana gen. sp. nov., aberrant Ampharetidae from the East Pacific Rise hydrothermal vents. Oceanol Acta, 3, 267–274.

    Google Scholar 

  • Desbruyères, D, and Laubier, L. 1986. Les Alvuiellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous-marines: systématique, biologie et écologie. Can J Zool, 64, 2227–2245.

    Article  Google Scholar 

  • Dwiono, S A P, Moraga, D, Le Pennec, M, and Monnet, J. 1989. Genetic variability of the Lucinidae: Loupes lucinalis, Lucinella divaricata and Lucinoma borealis minor (Molluca: Bivalvia) from Brittany, France. Biochem Syst Ecol, 17, 463–468.

    Article  Google Scholar 

  • Edmond, J M, Von Damm, K L, McDuff, R E, and Measures, C I. 1982. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature, 297, 187–191.

    Article  CAS  Google Scholar 

  • France, S C, Hessler, R R, and Vrijenhoek, R C. 1992. Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris. Mar Biol, 114, 551–559.

    Article  Google Scholar 

  • Fustec, A, Desbruyères, D, and Juniper, S K. 1987. Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr, 4, 121–164.

    Google Scholar 

  • Gaill, F, Halpern, S, Quintana, C, and Desbruyères, D. 1984. Présence intracellulaire d'arsenic et de zinc associés au soufre chez une Polychète des sources hydrothermales (Alvinella pompejana). C r Acad Sci Paris, sér III, 298, 331–336.

    CAS  Google Scholar 

  • Gooch, J L, and Schopf, J J M. 1972. Genetic variability in the deep-sea: relation to environmental variability. Evolution, 26, 545–552.

    Article  Google Scholar 

  • Grassle, J P. 1985. Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilus) from the Galapagos Rift and 13°N on the East Pacific Rise. Biol Soc Wash Bull, 6, 429–442.

    Google Scholar 

  • Grassle, J P, and Grassle, J F. 1976. Sibling species in the marine pollution indicator Capitella (Polychaeta). Science, 192, 567–569.

    Article  CAS  PubMed  Google Scholar 

  • Harris, H, and Hopkinson, D A. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Hartl, D L. 1988. A Primer of Population Genetics, 2nd edn. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Haymon, R M, Fornari, D J, Von Damm, K L, Lilley, M D, Perfit, M R, Edmond, J M, Shanks, W C, Lutz, R A, Grebmeier, J M, Carbotte, S, Wright, D, McLaughlin, E, Smith, M, Beedle, N, and Olson, E. 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45 52′N: direct submersible observations of sea-floor phenomena associated with an eruption event in April, 1991. Earth Planet Sci Lett, 119, 85–101.

    Article  Google Scholar 

  • Hessler, R R, and Lonsdale, P F. 1991. Biogeography of Mariana Trough hydrothermal vent communities. Deep-Sea Res, 38, 185–199.

    Article  Google Scholar 

  • Hessler, R R, Smithey, W M, Boudrias, M A, Keller, C H, Lutz, R A, and Childress, J J. 1988. Temporal change in megafauna at the Rose Garden hydrothermal vent. Deep-Sea Res, 35, 1681–1710.

    Article  Google Scholar 

  • Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800–802.

    Article  Google Scholar 

  • Johnson, M S, and Black, R. 1982. Chaotic genetic patchiness in an intertidal limpet, Siphonaria spp. Mar Biol, 70, 157–164.

    Article  Google Scholar 

  • Johnson, M S, and Black, R. 1991. Genetic subdivision of the intertidal snail Bembicium vittatum (Gasteropoda: Littorinidae) varies with habitat in the Houtman Abrolhos Islands, Western Australia. Heredity, 67, 205–213.

    Article  Google Scholar 

  • Jollivet, D. 1993. Distribution et évolution de la faune associée aux sources hydrothermales profondes à 13°N sur la dorsale du Pacifique oriental: le cas particulier des polychètes Alvinellidae. Thèse de Doctorat N. R., Université de Bretagne Occidentale, France.

    Google Scholar 

  • Karl, S A, and Avise, J C. 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, 256, 100–102.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M, and Weiss, G H. 1964. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koehn, R K, and Bayne, B L. 1989. Towards a physiological and genetical understanding of the energetics of the stress response. Biol J Linn Soc, 37, 157–171.

    Article  Google Scholar 

  • Lalou, C. 1991. Deep-sea hydrothermal venting: a recently discovered marine system. J Mar Syst, 1, 403–440.

    Article  Google Scholar 

  • Levene, H. 1949. On a matching problem arising in genetics. Ann Math Stat, 20, 91–94.

    Article  Google Scholar 

  • Lonsdale, P F. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res, 24, 857–863.

    Article  Google Scholar 

  • Manly, B F J. 1985. The Statistics of Natural Selection on Animal Populations. Chapman and Hall, London.

    Book  Google Scholar 

  • McCauley, D E. 1991. Genetic consequences of local population extinction and recolonization. Trends Ecol Evol, 6, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, D. 1989. Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and Paralvinella palmiformis. Mar Biol, 103, 95–106.

    Article  Google Scholar 

  • Michard, G, Albarède, F, Michard, A, Minster, J, Charlou, J L, and Tan, N. 1984. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth Planet Sci Lett, 67, 297–307.

    Article  CAS  Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet, 41, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Nevo, E, Kim, Y J, Shaw, C R, and Thaeler, C S. 1974. Genetic variation, selection, and speciation in Thomomys talpoides pocket gophers. Evolution, 28, 1–23.

    Article  PubMed  Google Scholar 

  • Nicklas, N L, and Hoffman, R J. 1979. Genetic similarity between two morphologically similar species of polychaetes. Mar Biol, 52, 53–59.

    Article  Google Scholar 

  • Pasteur, N, Pasteur, G, Bonhomme, F, Catalan, J, and Britton-Davidian, J. 1987. Manuel Technique de Génétique par Électrophorèse des Protéines. Lavoisier, Paris.

    Google Scholar 

  • Planes, S, Borsa, P, Galzin, R, and Bonhomme, F. 1994. Geographical structure and gene flow in the manini (convict surgeonfish, Acanthurus triostegus) in the south-central Pacific. In: Beaumont, A. R. (ed.) Genetics and Evolution of Aquatic Organisms, pp. 113–121. Chapman and Hall, London.

    Google Scholar 

  • Siebenaller, J F. 1978. Genetic variation in deep-sea invertebrate populations: the bathyal gastropod Bathybembix bairdii. Mar Biol, 47, 265–275.

    Article  CAS  Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    Article  PubMed  Google Scholar 

  • Slatkin, M, and Barton, N H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43, 1349–1368.

    Article  PubMed  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. Freeman and Co., San Francisco.

    Google Scholar 

  • Soulé, M. 1976. Allozyme variation: its determinant in space and time. In: Ayala, F. J. (ed.) Molecular Evolution, pp. 60–76. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1989. BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. University of Illinois, Urbana, IL.

    Google Scholar 

  • Tunnicliffe, V. 1988. Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc R Soc B, 233, 347–366.

    Google Scholar 

  • Tunnicliffe, V. 1991. The biology of hydrothermal vents: Ecology and evolution. Oceanogr Mar Biol Ann Rev, 29, 319–407.

    Google Scholar 

  • Tunnicliffe, V, Desbruyères, D, Jollivet, D, and Laubier, L. 1993. Systematic and ecological characteristics of Paralvinella sulfïncola Desbruyères and Laubier, a new polychaete (family Alvinellidae) from northeast Pacific hydrothermal vents. Can J Zool, 71, 286–297.

    Article  Google Scholar 

  • Tunnicliffe, V, and Jensen, R G. 1987. Distribution and behavior of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northeast Pacific. Can J Zool, 65, 2443–2449.

    Article  Google Scholar 

  • Vithayasai, C. 1973. Exact critical values of the Hardy-Weinberg test statistic for two alleles. Commun Stat, 1, 229–242.

    Google Scholar 

  • Vrijenhoek, R C, Lutz, R A, Craddock, C, Black, M B, Karl, S, Hoeh, W R, and Gustafson, R. 1993. Gene flow and speciation in deep-sea hydrothermal vent organisms. In: Catzeflis, F. M. (ed.) Evolution, 93, p. 484. Fourth Congress of the European Society for Evolutionary Biology, Montpellier, France.

    Google Scholar 

  • Watremez, P, and Kervevan, C. 1990. Origine des variations de l'activité hydrothermale: premiers éléments de réponse d'un modèle numérique simple. C r Acad Sci Paris, sér II, 153–158.

  • Watts, R J, Johnson, M S, and Black, R. 1990. Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia. Mar Biol, 105, 145–151.

    Article  Google Scholar 

  • Weir, B S. 1990. Intraspecific differentiation. In: Hillis, D. M. and Moritz, C. (eds) Molecular Systematics, pp. 373–410. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.

    Article  Google Scholar 

  • Zal, F, Desbruyères, D, and Louin-Toulmond, C. 1994. Sexual dimorphism in Paralvinella grasslei, a polychaete annelid from deep-sea hydrothermal vents. C r Acad Sci Paris, Life sciences, 317, 42–48.

    Google Scholar 

  • Zouros, E, and Foltz, D W. 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia, 25, 583–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Molecular Biology Department, Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK

    Didier Jollivet

  2. URM 7, Laboratoire d'Ecologie Abyssale, DROIEP, IFREMER, Centre de Brest, BP70, Plouzané, 29280, France

    Didier Jollivet & Daniel Desbruyères

  3. Laboratoire Génome et Populations, URA CNRS 1493, Université de Montpellier II, Place Eugène Bataillon, CC. 63, Montpellier, 34095, France

    François Bonhomme

  4. URA CNRS D1513, Institut d'Études Marines, Université de Bretagne Occidentale, 6, avenue Le Gorgeu, BP 452, Brest, 29275, France

    Dario Moraga

Authors
  1. Didier Jollivet
    View author publications

    Search author on:PubMed Google Scholar

  2. Daniel Desbruyères
    View author publications

    Search author on:PubMed Google Scholar

  3. François Bonhomme
    View author publications

    Search author on:PubMed Google Scholar

  4. Dario Moraga
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jollivet, D., Desbruyères, D., Bonhomme, F. et al. Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. Heredity 74, 376–391 (1995). https://doi.org/10.1038/hdy.1995.56

Download citation

  • Received: 01 July 1994

  • Issue date: 01 April 1995

  • DOI: https://doi.org/10.1038/hdy.1995.56

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • Alvinellidae
  • F ST
  • genetic variation
  • hydrothermal vents

This article is cited by

  • Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges

    • Sabine Gollner
    • Diego Fontaneto
    • Pedro Martínez Arbizu

    Marine Biology (2011)

  • Determining gene flow and the influence of selection across the equatorial barrier of the East Pacific Rise in the tube-dwelling polychaete Alvinella pompejana

    • Sophie Plouviez
    • Dominique Le Guen
    • Didier Jollivet

    BMC Evolutionary Biology (2010)

  • Geographic clines and stepping-stone patterns detected along the East Pacific Rise in the vetigastropod Lepetodrilus elevatus reflect species crypticism

    • M. Matabos
    • E. Thiébaut
    • F. Bonhomme

    Marine Biology (2008)

  • Genetic comparison of two populations of the deep-sea vent shrimp Rimicaris exoculata (Decapoda: Bresiliidae) from the Mid-Atlantic Ridge

    • S. Creasey
    • A. D. Rogers
    • P. A. Tyler

    Marine Biology (1996)

  • Specific and genetic diversity at deep-sea hydrothermal vents: an overview

    • Didier Jollivet

    Biodiversity and Conservation (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited