Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 1995

Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci

  • Konstantin V Krutovskii1 nAff3 &
  • Fritz Bergmann2 

Heredity volume 74, pages 464–480 (1995)Cite this article

  • 3015 Accesses

  • 78 Citations

  • 6 Altmetric

  • Metrics details

Abstract

We analysed patterns of genetic variation at 26 isozyme loci across the area of two main forest-forming spruce species in Eurasia, Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (P. obovata Ledeb.). Ten seed samples from distant parts of the P. abies-P. obovata area and from a supposedly wide zone of introgressive hybridization between them were investigated. A very high level of allozyme variation was found in populations of both species. As parameters of gene diversity, the mean number of alleles per locus, percentage of polymorphic loci (95 per cent criterion) and expected heterozygosity averaged 2.8, 61.5 and 0.252 for P. abies and 2.4, 61.5 and 0.213 for P. obovata, respectively. Norway and Siberian spruces turned out to be extremely similar genetically. We did not find any fixed allele differences between them, i.e. there were no diagnostic loci and only a few alleles could be characteristic of some populations. Cluster and multivariate analyses have shown that these two species should be considered as two closely related subspecies or two geographical races of one spruce species undergoing considerable gene exchange. Our genetic data agree with morphological data and confirm the existence of a wide zone of introgressive hybridization between Norway and Siberian spruces — perhaps the widest known among plants. The samples which, according to morphological and geographical data, were taken from presumably ‘hybrid’ populations showed ‘intermediate’ genetic characteristics. Clinal variation was suggested for some alleles, and the ‘rare allele phenomenon’, i.e. higher frequencies of rare and unique alleles, was observed in the ‘hybrid’ spruce populations.

Similar content being viewed by others

Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs

Article Open access 30 November 2021

Phenotypic variation in 1,100 provenances of Picea abies measured over 50 years on 33 German trial sites

Article Open access 09 August 2024

Genetic control of tracheid properties in Norway spruce wood

Article Open access 22 October 2020

Article PDF

References

  • Alden, J, and Loopstra, C. 1987. Genetic diversity and population structure of Picea glauca on an altitudinal gradient in interior Alaska. Can J Forest Res, 17, 1519–1526.

    Google Scholar 

  • Altukhov, Yu P, Krutovskii, K V, Gafarov, N I, Dukharev, V A, and Morozov, G P. 1986a. Allozyme variability in a natural population of Norway spruce (Picea abies [L.] Karst.). I. Polymorphic systems and mechanisms of their genetic control. Genetika (Russian), 22, 2135–2151 (translated into English as Soviet Genetics (1987), 22, 1028–1040).

    CAS  Google Scholar 

  • Altukhov, Yu P, Gafarov, N I, Krutovskii, K V, and Dukharev, V A. 1986b. Allozyme variability in a natural population of Norway spruce (Picea abies [L.] Karst.). III. Correlation between levels of individual heterozygosity and relative number of inviable seeds. Genetika (Russian), 22, 2825–2830 (translated into English as Soviet Genetics (1987), 22, 1580–1585).

    Google Scholar 

  • Altukhov, Yu P, Krutovskii, K V, Dukharev, V A, Larionova, A Ya, Politov, D V, and Ryabokon, S M. 1989. Biochemical population genetics of wood forest species. In: Forest Genetics, Breeding and Physiology of Woody Plants. Proceedings of the IUFRO International Symposium (September, 24–30, 1989, Voronezh, USSR), pp. 21–29, Moscow.

  • Ashton, G C, and Braden, A W H. 1961. Serum δ-globulin polymorphism in mice. Aust J Biol Sci, 14, 248–253.

    CAS  Google Scholar 

  • Barton, N H, and Hewitt, G M. 1985. Analysis of hybrid zones. Ann Rev Ecol Syst, 16, 113–148.

    Article  Google Scholar 

  • Barton, N H, Halliday, R B, and Hewitt, G M. 1983. Rare electrophoretic variants in a hybrid zone. Heredity, 50, 139–146.

    Google Scholar 

  • Bergmann, F. 1973. Genetische Untersuchungen bei Picea abies mit Hilfe der Isoenzym-Identifizierung. II. Genetische Kontrolle von Esterase- und Leucinaminopeptidase-Isoenzymen im haploiden Endosperm ruhender Samen. Theor Appl Genet, 43, 222–225.

    CAS  PubMed  Google Scholar 

  • Bergmann, F. 1974a. Genetischer Abstand zwischen Populationen. II. Die Bestimmung des genetischen Abstands zwischen europäischen Fichtenpopulationen (Picea abies) auf der Basis von Isoenzym-Genhäufigkeiten. Silvae Genet, 23, 28–32.

    Google Scholar 

  • Bergmann, F. 1974b. The genetics of some isoenzyme systems in spruce endosperm (Picea abies). Genetika, 6, 353–360.

    Google Scholar 

  • Bergmann, F. 1975. Herkunfts-Identifizierung von Forstsaatgut auf der Basis von Isoenzym-Genhäufigkeiten. Allgemeine Forst- und Jagdzeitung, 146, 191–195.

    Google Scholar 

  • Bergmann, F. 1978. The allelic distribution at an acid phosphatase locus in Norway Spruce (Picea abies) along similar climatic gradients. Theor Appl Genet, 52, 57–64.

    CAS  PubMed  Google Scholar 

  • Bergmann, F. 1991. Causes and consequences of species-specific genetic variation patterns in European forest tree species: examples with Norway spruce and silver fir. In: Müller-Starck, G. and Ziehe, M. (eds) Genetic Variation in European Populations of Forest Trees, pp. 192–204. J. D. Sauerländer's Verlag, Frankfurt am Main.

    Google Scholar 

  • Bergmann, F, and Gregorius, H-R. 1979. Comparison of the genetic diversities of various populations of Norway Spruce (Picea abies). In: Proceedings of the Conference on Biochemical Genetics of Forest Trees, pp. 99–107. Umeå.

  • Bergmann, F, and Gregorius, H-R. 1993. Ecogeographical distribution and thermostability of isocitrate dehydrogenase (IDH) alloenzymes in European silver fir (Abies alba). Biochem Syst Ecol, 21, 597–605.

    CAS  Google Scholar 

  • Bergmann, F, and Ruetz, W. 1991. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. For Ecol Manag, 46, 39–48.

    Google Scholar 

  • Bergman, F, and Scholz, F. 1985. Effects of selection pressure by SO2 pollution on genetic structure of Norway Spruce (Picea abies). In: Gregorius, H.-R. (ed.) Population Genetics in Forestry, Lecture Notes in Biomathematics, vol. 60, pp. 267–275. Springer-Verlag, Berlin.

    Google Scholar 

  • Bergmann, F, and Scholz, F. 1987. The impact of air pollution on the genetic structure of Norway spruce. Silvae Genet, 36, 80–83.

    Google Scholar 

  • Bergmann, F, and Scholz, F. 1989. Selection effects of air pollution in Norway spruce (Picea abies) populations. In: Scholz, F., Gregorius, H.-R. and Rudin, D. (eds) Genetic Effects of Air Pollutants in Forest Tree Populations, pp. 143–160. Springer-Verlag, Berlin.

    Google Scholar 

  • Boyle, T J B, and Morgenstern, E K. 1987. Some aspects of the population structure of Black spruce in Central New Brunswick. Silvae Genet, 36, 53–60.

    Google Scholar 

  • Brunel, D, and Rodolphe, F. 1985. Genetic neighborhood structure in a population of Picea abies L. Theor Appl Genet, 71, 101–110.

    CAS  PubMed  Google Scholar 

  • Cavalli-Sforza, L L, and Edwards, A W F. 1967. Phylogenetic analysis: models and estimation procedures. Am J Hum Genet, 19, 233–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cesaroni, D, Allegrucci, G, and Sbordoni, V. 1992. A narrow hybrid zone between two crayfish species from a Mexican cave. J Evol Biol, 5, 643–659.

    Google Scholar 

  • Cheliak, W M, Pitel, J A, and Murray, G. 1985. Population structure and the mating system of white spruce. Can J Forest Res, 15, 301–308.

    Google Scholar 

  • Cheliak, W M, Skrøppa, T, and Pitel, J A. 1987. Genetics of the polycross. I. Experimental results from Norway Spruce. Theor Appl Genet, 73, 321–329.

    CAS  PubMed  Google Scholar 

  • Conkle, M T, Schiller, G, and Grunwald, C. 1988. Electrophoretic analysis of diversity and phytogeny of Pinus brutia and closely related taxa. Syst Bot, 13, 411–424.

    Google Scholar 

  • Dancik, B P, and Yeh, F C. 1983. Allozyme variability and evolution of lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana) in Alberta. Can J Genet Cytol, 25, 57–64.

    Google Scholar 

  • Farris, J S. 1972. Estimating phylogenetic trees from distance matrices. Am Nat, 106, 645–668.

    Google Scholar 

  • Finkeldey, R. 1992. Auswahlkriterien und Anlage genetischer Ressourcen bei der Fichte (Picea abies [L.] Karst.). Forstarchiv, 63, 25–32.

    Google Scholar 

  • Finkeldey, R. 1995. Homogeneity of pollen allele frequencies of single seed trees in Picea abies (L.) Karst. plantations. Heredity, 74, 451–463.

    Google Scholar 

  • Geburek, Th, and Von Wuehlisch, G. 1989. Linkage analysis of isozyme gene loci in Picea abies (L.) Karst. Heredity, 62, 185–191.

    Google Scholar 

  • Giannini, R, Morgante, M, and Vendramin, G G. 1991a. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genet, 40, 160–166.

    Google Scholar 

  • Giannini, R, Morgante, M, and Vendramin, G G. 1991b. A putative gene duplication in Norway spruce for 6PGD and its phylogenetic implications. In: Fineschi, S., Malvolti, M. E., Cannata, F. and Hattemer, H. H. (eds) Biochemical Markers in the Population Genetics of Forest Trees, pp. 23–29. SPB Academic Publishing bv, The Hague.

    Google Scholar 

  • Goncharenko, G G, and Potenko, V V. 1991. Genetic variability and differentiation in Norway spruce (Picea abies [L.] Karst.) and Siberian spruce (Picea obovata Ledeb.) populations. Genetika (Russian), 27, 1759–1772 (translated into English as Soviet Genetics (1992), 27, 1235–1246).

    Google Scholar 

  • Goncharenko, G G, Potenko, V V, Slobodyan, J N, and Sidor, A I. 1990. Genetic and taxonomic relations between Picea abies (L.), P. montana Schur and P. obovata Ledeb. Doklady Akademii Nauk BSSR (Russian), 34, 361–364.

    Google Scholar 

  • Goncharenko, G G, Potenko, V V, and Abdyganyev, N. 1992. Variation and differentiation in natural populations of Tien-Shan spruce (Picea schrenkiana Fisch, et Mey). Genetika (Russian), 28, 83–96 (translated into English as Soviet Genetics (1992), 28, 1446–1457).

    Google Scholar 

  • Gömöry, D. 1992. Effect of stand origin on the genetic diversity of Norway spruce (Picea abies [L.] Karst.) populations. For Ecol Manag, 54, 215–223.

    Google Scholar 

  • Gömöry, D, and Paule, L. 1990. Sravnenie geneticheskoi izmenchivosti i skhodstva populyacij eli iz territorii Slovakii i SSSR. In: Intenzifikacia pestovania smrekovych porastov s ohladomna ekologicke podmienky, pp. 2–12. (Russian). VSLD-MLTI, Zvolen-Moskva.

    Google Scholar 

  • Gregorius, H-R. 1974. On the concept of genetic distance between populations based on gene frequencies. In: Proc IUFRO Joint Meeting of Working Parties on Popul and Ecol Genet, Breed Theory and Progeny Testing, SO2.04.1–3, Stockholm, pp. 17–26.

  • Gregorius, H-R. 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci, 41, 253–271.

    Google Scholar 

  • Gregorius, H-R. 1984a. A unique genetic distance. Biometrical J, 26, 13–18.

    Google Scholar 

  • Gregorius, H-R. 1984b. Measurement of genetical differentiation in plant populations. In: Gregorius, H.-R. (ed.) Population Genetics in Forestry, Lecture Notes in Biomathematics, vol. 60, pp. 276–285. Springer-Verlag, Berlin.

    Google Scholar 

  • Gregorius, H-R. 1987. The relationship between the concepts of genetic diversity and differentiation. Theor Appl Genet, 74, 397–401.

    CAS  PubMed  Google Scholar 

  • Gregorius, H-R, and Bergmann, F. 1994. Analysis of isoenzyme genetic profiles observed in forest tree populations. In: Proceedings of the International Symposium on Population Genetics and Gene Conservation of Forest Trees SPB Academic Publishing bv., The Hague. (In press.)

    Google Scholar 

  • Gregorius, H-R, and Roberds, J H. 1986. Measurement of genetical differentiation among subpopulations. Theor Appl Genet, 71, 826–834.

    CAS  PubMed  Google Scholar 

  • Hamrick, J L. 1983. The distribution of genetic variation within and among natural plant populations. In: Chambers, S. and Schonewald-Cox, C. (eds) Genetics and Wild Population Management, pp. 335–349 (and Appendix, pp. 501–509). Addison Wesley, Reading.

    Google Scholar 

  • Hamrick, J L, and Godt, M J. 1989. Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp. 43–63. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hamrick, J L, and Loveless, M D. 1986. The influence of seed dispersal mechanisms on the genetic structure of plant populations. In: Estrada, J. and Fleming, T. H. (eds) Frugivores and Seed Dispersal, pp. 211–223. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Hamrick, J L, Mitton, J B, and Linhart, G B. 1981. Levels of genetic variation in trees: influence of life history characteristics. In: Conkle, M. T. (ed.) Proc of the Symposium on Isozymes of North American Forest Trees and Forest Insects, July 27, 1979, Berkeley, California, U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Gen. Tech. Rep. PSW-48, pp. 35–41.

    Google Scholar 

  • Harrison, R G. 1986. Pattern and process in a narrow hybrid zone. Heredity, 56, 337–349.

    Google Scholar 

  • Jacobs, B F, Werth, C R, and Gutman, S I. 1984. Genetic relationships in Abies (fir) of eastern United States: an electrophoretic study. Can J Bot, 62, 609–616.

    Google Scholar 

  • King, J N, Dancik, B P, and Dhir, N K. 1984. Genetic structure and mating system of white spruce (Picea glauca) in a seed production area. Can J Forest Res, 14, 639–643.

    Google Scholar 

  • Krutovskii, K V, and Gafarov, N I. 1987. Inheritance of 6-phosphogluconate dehydrogenase in Norway spruce, Picea abies [L.] Karst. Allelic interaction of 6-Pgd-2 and 6-Pgd-3 loci. Genetika (Russian), 23, 2073–2075.

    CAS  Google Scholar 

  • Krutovskii, K V, Politov, D V, and Altukhov, Yu P. 1994. Study of genetic differentiation and phylogeny of stone pine species using isozyme loci. In: Proceedings of the Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge, St. Moritz, Switzerland, Sept. 5–12, 1992 pp. 19–30. U.S. Dept. Agric. Gen. Tech. Rep. INT-GTR-309. Ogden, UT.

    Google Scholar 

  • Lagercrantz, U, and Ryman, N. 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution, 44, 38–53.

    PubMed  Google Scholar 

  • Ledig, F T. 1986. Heterozygosity, heterosis, and fitness in out-breeding plants. In: Soulé, M. E. (ed.) Conservation Biology: the Science of Scarcity and Diversity, pp. 77–104. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lindquist, B. 1948. The main varieties of Picea abies (L.) Karst, in Europe. Acta Horti Berg, 14, 249–342.

    Google Scholar 

  • Loveless, M D, and Hamrick, J L. 1984. Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst, 15, 65–95.

    Google Scholar 

  • Lundkvist, K. 1974a. Analysis of linkage in Picea abies by means of isozyme analysis. Proc IUFRO Joint Meeting of Working Parties on Popul and Ecol Genet, Breed Theory and Progeny Testing, SO2.04.1–3, Stockholm, p. 468.

  • Lundkvist, K. 1974b. Inheritance of leucine aminopeptidase isozymes in Picea abies [L.] Karst. Hereditas, 76, 91–96.

    CAS  PubMed  Google Scholar 

  • Lundkvist, K. 1975. Inheritance of acid phosphatase isozymes in Picea abies. Hereditas, 79, 221–226.

    CAS  PubMed  Google Scholar 

  • Lundkvist, K. 1979. Allozyme frequency distributions in four Swedish populations of Norway Spruce (Picea abies K.) I. Estimations of genetic variation within and among populations, genetic linkage and a mating system parameter. Hereditas, 90, 127–143.

    Google Scholar 

  • Lundkvist, K, and Rudin, D. 1977. Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas, 85, 67–74.

    Google Scholar 

  • Millar, C J, Strauss, S H, Conkle, M T, and Westfall, R D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Syst Bot, 13, 351–370.

    Google Scholar 

  • Morgante, M, and Vendramin, G G. 1991. Genetic variation in Italian populations of Picea abies [L.] Karst, and Pinus leucodermis Ant. In: Müller-Starck, G. and Ziehe, M. (eds) Genetic Variation in European Populations of Forest Trees, pp. 205–227. J. D. Sauerländer's Verlag, Frankfurt am Main.

    Google Scholar 

  • Morgante, M, Vendramin, G G, and Giannini, R. 1989. Genetics of 6PGD and SKDH in Norway spruce (Picea abies [L.] Karst.). J Genet Breed, 43, 67–71.

    Google Scholar 

  • Morgante, M, Vendramin, G G, and Rossi, P. 1991. Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can J Bot, 69, 2704–2708.

    Google Scholar 

  • Müller, G. 1977. Investigations on the degree of natural self-fertilization in stands of Norway spruce (Picea abies [L.] Karst.) and Scots pine (Pinus sylvestris L.). Silvae Genet, 26, 207–217.

    Google Scholar 

  • Müller-Starck, G, Baradat, Ph, and Bergmann, F. 1992. Genetic variation within European tree species. New Forests, 6, 23–47.

    Google Scholar 

  • Muona, O, Yazdani, R, and Lindqvist, G. 1987. Analysis of linkage in Picea abies. Hereditas, 106, 31–36.

    CAS  Google Scholar 

  • Muona, O, Paule, L, Szmidt, A E, and Kärkkäinen, K. 1990. Mating system analysis in a Central and Northern European population of Picea abies. Scand J Forest Res, 5, 97–102.

    Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet, 41, 225–233.

    CAS  PubMed  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Reilly, G J, Parker, W M, and Cheliak, W M. 1985. Isozyme differentiation of upland and lowland Picea mariana stands in northern Ontario. Silvae Genet, 34, 214–221.

    Google Scholar 

  • Paule, L. 1986. Isozyme polymorphism of Norway spruce (Picea abies Karst.) populations from Slovakia. In: Kormutak, A. (ed.) Genepool of Forest Woody Species, its Conservation and Utilization Proceedings of the International Symposium, pp. 93–106, Nitra, CSSR.

    Google Scholar 

  • Paule, L, and Gömöry, D. 1993. Genetic structure of Norway spruce (Picea abies Karst.) populations from mountainous areas in Slovakia. Lesnictví — Forestry, 39, 10–13.

    Google Scholar 

  • Paule, L, Lindgren, D, and Yazdani, R. 1993. Allozyme frequencies, outcrossing rate and pollen contamination in Picea abies seed orchards. Scand J Forest Res, 8, 8–17.

    Google Scholar 

  • Paule, L, Szmidt, A E, and Yazdani, R. 1990. Isozyme polymorphism of Norway spruce (Picea abies Karst.) in Slovakia. I. Genetic structure of adjacent populations. Acta Facultatis Forestalls Zvolen, 32, 57–70.

    Google Scholar 

  • Poulsen, H D, Simonsen, V, and Wellendorf, H. 1983. The inheritance of 6 isoenzymes in Norway Spruce (Picea abies L. Karst.). Forest Tree Improv, 16, 12–32.

    Google Scholar 

  • Prager, E M, and Wilson, A C. 1976. Congruence of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds. J Mol Evol, 9, 45–57.

    CAS  PubMed  Google Scholar 

  • Pravdin, L F. 1975. Picea abies (L.) and P. obovata Ledeb. in the USSR. Nauka Publ., Moscow, (Russian).

  • Rohlf, F J. 1988. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Publishing Ltd., New York.

  • Rubner, K. 1953. Die pflanzengeographischen Grundlagen des Waldbaues 4 Aufl. Neumann Verlag, Radebeul and Berlin.

    Google Scholar 

  • Schmidt-Vogt, H. 1974. Die systematische Stellung der gemeinen Fichte (Picea abies (L.) Karst.) und der sibirischen Fichte (P. obovata Ledeb.) in der Gattung Picea. Allg Forst- u J-Ztg, 3/4, 45–60.

    Google Scholar 

  • Schmidt-Vogt, H. 1977. Die Fichte, Band I. Verlag Paul Parey, Hamburg.

    Google Scholar 

  • Scholz, F, and Bergmann, F. 1984. Selection pressure by air pollution as studied by isozyme-gene-systems in Norway spruce exposed to sulphur dioxide. Silvae Genet, 33, 238–240.

    Google Scholar 

  • Siciliano, M J, and Shaw, C R. 1976. Separation and visualization of enzymes on gels. In: Smith, I. (ed.) Chromatographic and Electrophoretic Techniques, pp. 185–209. William Heinemann Med. Books Ltd, London.

    Google Scholar 

  • Sneath, P H A, and Sokal, R R. 1973. Numerical Taxonomy, pp. 230–234. W. H. Freeman, San Francisco.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered, 72, 281–283.

    Google Scholar 

  • Tigerstedt, P M A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas, 75, 47–60.

    CAS  PubMed  Google Scholar 

  • Tigerstedt, P M A. 1979. Genetic adaptation of plants in the subarctic environment. Holarctic Ecol, 2, 264–268.

    CAS  Google Scholar 

  • Wellendorf, H. 1991. Development of breeding strategies to avoid loss of genetic variation in Norway spruce domestication. In: Müller-Starck, G. and Ziehe, M. (eds) Genetic Variation in European Populations of Forest Trees, pp. 252–270. J. D. Sauerländer's Verlag, Frankfurt am Main.

    Google Scholar 

  • Wheeler, N C, Guries, R P, and O'Malley, D M. 1983. Bio-systematics of the genus Pinus, subsection Contortae. Biochem Syst Evol, 11, 333–340.

    Google Scholar 

  • Wilkinson, L. 1987. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL.

  • Woodruff, D S. 1989. Genetic anomalies associated with Cerion hybrid zones: the origin and maintenance of new electromorphic variants called hybrizymes. Biol J Linn Soc, 36, 281–294.

    Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations, vol. 4, Variability within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Von Wuelisch, G, and Krusche, D. 1991. Single and multilocus genetic effects on diameter growth in Picea abies (L.) Karst. In: Fineschi, S., Malvolti, M. E., Cannata, F. and Hattemer, H. H. (eds) Biochemical Markers in the Population Genetics of Forest Trees, pp. 77–86. SPB Academic Publishing bv., The Hague.

    Google Scholar 

  • Xie, C Y, and Knowles, P. 1992. Male fertility variation in an open-pollinated plantation of Norway spruce (Picea abies). Can J Forest Res, 22, 1463–1468.

    Google Scholar 

  • Yeh, F C. 1981. Analysis of gene diversity in some species of conifers. In: Proc of the Symposium on Isozymes of North American Forest Trees and Forest Insects, July 27, 1979, Berkeley, California, U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Gen. Tech. Rep. PSW-48, pp. 48–52.

    Google Scholar 

  • Yeh, F C, and Arnott, J T. 1986. Electrophoretic differentiation of Picea sitchensis, Picea glauca and their hybrids. Can J Forest Res, 16, 791–798.

    Google Scholar 

  • Yeh, F C, and El-Kassaby, Y A. 1980. Enzyme variation in natural populations of sitka spruce (Picea sitchensis). I. Genetic variation patterns among trees from 10 IUFRO provenances. Can J Forest Res, 10, 415–422.

    CAS  Google Scholar 

  • Yeh, F C, Khalil, M A K, El-Kassaby, Y A, and Trust, D C. 1986. Allozyme variation in Picea mariana from Newfoundland: genetic diversity, population structure, and analysis of differentiation. Can J Forest Res, 16, 713–720.

    CAS  Google Scholar 

Download references

Author information

Author notes
  1. Konstantin V Krutovskii

    Present address: Department of Forest Science, Oregon State University, FSL 020, Corvallis, OR, 97331-7501, USA

Authors and Affiliations

  1. Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, GSP-1, Moscow, 117809 B-333, Russia

    Konstantin V Krutovskii

  2. Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany

    Fritz Bergmann

Authors
  1. Konstantin V Krutovskii
    View author publications

    Search author on:PubMed Google Scholar

  2. Fritz Bergmann
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutovskii, K., Bergmann, F. Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74, 464–480 (1995). https://doi.org/10.1038/hdy.1995.67

Download citation

  • Received: 10 December 1993

  • Issue date: 01 May 1995

  • DOI: https://doi.org/10.1038/hdy.1995.67

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • introgressive hybridization
  • isozyme loci
  • phylogeny
  • Picea abies (L.) Karst.
  • Picea obovata Ledeb.
  • population genetic structure

This article is cited by

  • Representation of Picea pollen in modern and surface samples from Central European Russia

    • Maria B. Nosova
    • Elena E. Severova
    • Jana V. Kosenko

    Vegetation History and Archaeobotany (2015)

  • Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains

    • Monia S. H. Haselhorst
    • C. Alex Buerkle

    Tree Genetics & Genomes (2013)

  • Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea

    • Marie Bouillé
    • Sauphie Senneville
    • Jean Bousquet

    Tree Genetics & Genomes (2011)

  • Relationships among spruces (Picea A. Dietr., Pinaceae) of the Russian Far East

    • V. V. Potenko

    Plant Systematics and Evolution (2007)

  • Allozyme Variation and Phylogenetic Relationships in Picea jezoensis (Pinaceae) Populations of the Russian Far East

    • V. V. Potenko

    Biochemical Genetics (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited