Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Bottleneck effects in local populations of fossorial Ctenomys (Rodentia, Ctenomyidae) affected by vulcanism
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 1995

Bottleneck effects in local populations of fossorial Ctenomys (Rodentia, Ctenomyidae) affected by vulcanism

  • M H Gallardo1,
  • N Köhler1 &
  • C Araneda1 

Heredity volume 74, pages 638–646 (1995)Cite this article

  • 2244 Accesses

  • 26 Citations

  • Metrics details

Abstract

Bottleneck effects in three local populations of the fossorial rodent Ctenomys maulinus brunneus as caused by the recent eruption of the Lonquimay volcano in the Andes of Southcentral Chile are presented. Comparative census estimates in Río Colorado indicated a 91.3 per cent decrease in the breeding population size after the catastrophe. All parameters of genetic diversity were drastically affected and surpassed neutral expectations in each population. The proportion of polymorphic loci decreased by 57 per cent, 100 per cent and 83.2 per cent in the bottleneck populations of Río Colorado, Las Raíces and Alto Bío Bío, respectively. The source populations were estimated to have 2.2, 1.5 and 1.4 alleles per locus whereas the three derived populations had estimated values of 1.4, 1.0 and 1.1, respectively. Average heterozygosity dropped by 71 per cent, 100 per cent, and 57 per cent in the same populations, respectively. The spatial genetic structuring observed before the eruption indicated a high degree of population subdivision (Wahlund effect), consistent with an isolation-by-distance model. After the eruption, excessive microspatial genetic differentiation and larger-scale homogeneity indicated drastic disruption of the breeding or social units. Low levels of genetic variation in Andean Ctenomys, claimed to be an adaptive response to the stable subterranean niche, can be attained by the recurrent catastrophe-induced effects of genetic drift.

Similar content being viewed by others

Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini)

Article Open access 27 December 2022

Diversification of the Balloon bushcrickets (Orthoptera, Hexacentrinae, Aerotegmina) in the East African mountains

Article Open access 10 May 2021

Genetic diversity, population structure and historical demography of the two-spined yellowtail stargazer (Uranoscopus cognatus)

Article Open access 25 June 2021

Article PDF

References

  • Archie, J W. 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution, 39, 623–637.

    Article  PubMed  Google Scholar 

  • Barrientos, S E, and Acevedo-Aranguiz, P S. 1992. Seis- mological aspects of the 1988–1989 Lonquimay (Chile) volcanic eruption. J Volcan Geothermal Res, 53, 73–87.

    Article  Google Scholar 

  • Baker, A J, and Moeed, A. 1987. Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution, 41, 525–538.

    PubMed  Google Scholar 

  • Barton, N H. 1989. Founder effect speciation. In: Otte, D. and Endler, J. A. (eds) Speciation and its Consequences, pp. 229–256, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Beaucournu, J C, and Gallardo, M H. 1977. Quelques nouvelles puces du Chili (Siphonaptera), parasites du Ctenomys (Rod., Octodontidae). Bull Soc Pathol Exotique, 70, 438–450.

    CAS  Google Scholar 

  • Berry, R J. 1986. Genetics of insular populations of mammals, with particular reference to differentiation and founder effects in British small mammals. Biol J Linn Soc, 28, 205–230.

    Article  Google Scholar 

  • Bonnell, M L, and Selander, R K. 1974. Elephant seals: genetic variation and near extinction. Science, 184, 908–909.

    Article  Google Scholar 

  • Bryant, E H, and Mefert, L M. 1990. Multivariate phenotypic differentiation among bottleneck lines of the housefly. Evolution, 44, 660–668.

    Article  PubMed  Google Scholar 

  • Carson, H L, and Templeton, A R. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann Rev Ecol Syst, 15, 97–131.

    Article  Google Scholar 

  • Chakraborty, R, and Nei, M. 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution, 31, 347–356.

    Article  PubMed  Google Scholar 

  • Chepko-Sade, B D, Shields, W M, Berger, J, Tang Halpin, Z, Thomas Jones, W, Rogers, L L, Rood, J P, and Smith, A T. 1987. The effects of dispersal and social structure on effective population size. In: Chepko-Sade, B. D. and Tang Halpin, Z. (eds) Mammalian Dispersal Patterns, pp. 287–321, The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Chesser, R K, and Ryman, N. 1986. Inbreeding as a strategy in subdivided populations. Evolution, 40, 614–624.

    Article  Google Scholar 

  • Coates, D J. 1992. Genetic consequences of a bottleneck and spatial genetic structure in a triggerplant Stylidium coroniforme (Stylidiaceae). Heredity, 69, 512–520.

    Article  Google Scholar 

  • Dodd, D M B, and Powell, J R. 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution, 39, 1388–1392.

    Article  PubMed  Google Scholar 

  • Easteal, S. 1985. The ecological genetics of introduced populations of the giant toad Bufo marinus. II. Effective population size. Genetics, 110, 107–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eguiarte, L E, Burquez, A, Rodriguez, J, Martinez-Ramos, M, Saruklan, J, and Pinero, D. 1993. Direct and indirect estimates of neighborhood and effective population size in a tropical palm, Astrocaryum mexicanum. Evolution, 47, 75–87.

    Article  PubMed  Google Scholar 

  • Freiberg, H M. 1985. Vegetationskundliche Untersuchungen an Sudchilenischen Vulkanen. Bonn Geograph Abhandl, 70, 1–170.

    Google Scholar 

  • Gallardo, M H. 1979. Las especies chilenas de Ctenomys. I. Estabilidad cariotípica. Arch Biol Med Exp, 12, 71–82.

    Google Scholar 

  • Gallardo, M H. 1991. Karyotypic evolution in Ctenomys (Rodentia, Ctenomyidae). J Mamm, 72, 11–21.

    Article  Google Scholar 

  • Gallardo, M H, and Anrioue, J. 1991. Populational parameters and burrow systems in Ctenomys maulinus brunneus (Rodentia, Ctenomyidae). Med Ambiente, 11, 48–53.

    Google Scholar 

  • Gallardo, M H, and Köhler, N. 1992. Genetic divergence in Ctenomys (Rodentia, Ctenomyidae) from the Andes of Chile. J Mamm, 72, 99–105.

    Article  Google Scholar 

  • Gallardo, M H, and Köhler, N. 1994. Demographic changes and genetic losses in populations of fossorial rodents (Ctenomys maulinus brunneus) affected by a natural catastrophe. Z Säugetierkunde, 59 (in press).

  • Gallardo, M H, and Palma, R E. 1992. Intra- and interspecific genetic variability in Ctenomys (Rodentia, Ctenomyidae). Biochem Syst Ecol, 20, 523–534.

    Article  CAS  Google Scholar 

  • Gallardo, M H, Araneda, C, and Köhler, N. 1992. Genetic divergence in Spalacopus cyanus (Rodentia, Octodontidae). Z Säugetierkunde, 57, 231–237.

    Google Scholar 

  • Haiduk, M W, Baker, R J, Robbins, L W, and Schlitter, D A. 1981. Chromosomal variation in eight species of African megachiropterans. Cytogenet Cell Genet, 29, 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Hanski, I. 1991. Single species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc, 42, 17–38.

    Article  Google Scholar 

  • Hanski, I, and Gilpin, M. 1991. Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc, 42, 3–16.

    Article  Google Scholar 

  • Hartl, D L, and Clark, A G. 1989. Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Harwood, J, and Hall, A. 1990. Mass mortality in marine mammals: its implications for population dynamics and genetics. Trends Ecol Evol, 5, 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Husband, B C, and Barrett, S C H. 1992. Effective population size and genetic drift in Eichhornia paniculata. Evolution, 46, 1875–1890.

    Article  PubMed  Google Scholar 

  • Johnson, M S. 1988. Founder effects and geographic variation in the land snail Theba pisana. Heredity, 61, 133–142.

    Article  Google Scholar 

  • Lande, R. 1987. Extinction thresholds in demographic models of territorial populations. Am Nat, 130, 624–635.

    Article  Google Scholar 

  • Lande, R. 1988. Genetics and demography in biological conservation. Science, 241, 1455–1460.

    Article  CAS  PubMed  Google Scholar 

  • Lande, R, and Barrowclough, G F. 1987. Effective population size, genetic variation and their use in population management. In: Soulé, M. E. (ed.) Viable Populations for Conservation, pp. 87–123. Cambridge University Press, New York.

    Chapter  Google Scholar 

  • Leberg, P. 1992. Effects of population bottlenecks on genetic diversity as measured by enzyme electrophoresis. Evolution, 46, 477–494.

    Article  PubMed  Google Scholar 

  • McCauley, D E. 1991. Genetic consequences of local extinction and recolonization. Trends Ecol Evol, 6, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • McCommas, S A, and Bryant, E H. 1990. Loss of electro-phoretic variation in serially bottlenecked populations. Heredity, 64, 315–321.

    Article  PubMed  Google Scholar 

  • Maruyama, T, and Fuerst, P A. 1985a. Population bottlenecks and nonequilibrium models in population genetics. III. Genie homozygosity in populations which experience periodic bottlenecks. Genetics, 111, 691–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, T, and Fuerst, P A. 1985b. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics, 111, 675–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, T, and Kimura, M. 1980. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci USA, 77, 6710–6714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meffert, L M, and Bryant, H E. 1991. Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution, 45, 293–306.

    Article  PubMed  Google Scholar 

  • Moreno, H, and Gardeweg, M C. 1989. La erupcion reciente en el complejo volcánico Lonquimay (Diciembre 1988). Andes del Sur Rev Geol Chile, 16, 93–117.

    CAS  Google Scholar 

  • Nei, M, Maruyama, T, and Chakraborty, R. 1975. The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Article  PubMed  Google Scholar 

  • Nei, M, and Roychoudhury, A K. 1974. Sampling variances of heterozygosity and genie distance. Genetics, 76, 379–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M, and Tajima, F. 1981. Genetic drift and estimation of effective population size. Genetics, 98, 625–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo, E. 1979. Adaptive convergence and divergence of subterranean mammals. Ann Rev Ecol Syst, 10, 269–368.

    Article  Google Scholar 

  • Nevo, E. 1990. Genetic diversity and its ecological correlates in nature: comparisons between subterranean, fossorial and aboveground small mammals. In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 347–366. A. R. Liss, New York.

    Google Scholar 

  • O'Brien, S J, and Everman, J F. 1988. Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol, 3, 254–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien, S J, Roelke, M E, Marker, L, Newman, A, Winkler, C A, Meltzer, D, Colly, L, Vermann, J F, Bush, M, and Wildt, D E. 1985. Genetic basis for species vulnerability in the cheetah. Science, 227, 1428–1435.

    Article  CAS  PubMed  Google Scholar 

  • O'Brien, S J, Wildt, D E, Bush, M, Caro, T M, Fitzgibbon, C, Aggundey, I, and Leakey, R E. 1987. East African cheetahs: evidence for two population bottlenecks. Proc Natl Acad Sci USA, 84, 508–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer, C, Pusey, A E, Rowley, H, Gilbert, D A, Martenson, J, and O'Brien, S J. 1991. Case study of a population bottleneck: lions of the Ngorongoro crater. Conserv Biol, 5, 229–237.

    Article  Google Scholar 

  • Pearsqn, O P. 1959. Biology of subterranean rodents, Ctenomys, in Peru. Mem Mus Hist Nat 'Javier Prado', 9, 1–56.

    Google Scholar 

  • Pearson, O P, Binstein, N, Boiry, L, Busch, M C, Di Pace, M, Gallopin, G, Penchaszadeh, P, and Piantanida, M. 1968. Estructura social, distribucióon espacialy composicióon poredades de una poblacióon de tuco-tucos (Ctenomys talarum). Invest Zool Chile, 13, 47–80.

    Google Scholar 

  • Randi, E, and Apollonio, M. 1988. Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication. Heredity, 61, 405–410.

    Article  PubMed  Google Scholar 

  • Reig, O A, Bush, C, Ortells, M O, and Contreras, J R. 1990. An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo, E. and Reig, O. A. (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 71–96. A. R. Liss, New York.

    Google Scholar 

  • Rice, W R, and Hostert, E E. 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution, 47, 1637–1653.

    Article  PubMed  Google Scholar 

  • Rogers, J S. 1972. Measures of genetic similarity and genetic distance. Studies in genetics VII. Univ Texas Pub I, 7213, 145–153.

    Google Scholar 

  • Selander, R B, Smith, M H, Yang, S Y, Johnson, W E, and Gentry, J B. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the oldfield mouse (Peromyscus polionotus). Studies in genetics VI. Univ Texas Publ, 7103, 49–90.

    Google Scholar 

  • Simpson, B B. 1979. Quaternary of the high montane regions of South America. In: Duellman, W. R. (ed.) The South American Herpetofauna: its Origin, Evolution and Dispersal Monographs of Museum of University of Kansas, 7, 1–485.

    Google Scholar 

  • Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264–279.

    Article  PubMed  Google Scholar 

  • Swofford, D L, and Selander, R B. 1989. BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics Illinois Nat. Hist. Survey, IL.

    Google Scholar 

  • Veblen, T T. 1985. Stand dynamics in Chilean Nothofagus forests. In: Pickett, S. T. A. and White, P. S. (eds) The Ecology of Natural Disturbance and Patch Dynamics, pp. 35–51. Academic Press, London.

    Google Scholar 

  • Wade, M J, and McCauley, D E. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995–1005.

    Article  PubMed  Google Scholar 

  • Wildt, D E, Bush, M, Goodgrowe, K L, Packer, C, Pusey, A E, Brown, J L, Joslin, P, and O'Brien, S J. 1987. Reproductive and genetic consequences of founding isolated lion populations. Science, 329, 328–330.

    Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on Southwestern Indian tribes. II. Local genie differentiation in the Papago. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla, 567, Valdivia, Chile

    M H Gallardo, N Köhler & C Araneda

Authors
  1. M H Gallardo
    View author publications

    Search author on:PubMed Google Scholar

  2. N Köhler
    View author publications

    Search author on:PubMed Google Scholar

  3. C Araneda
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, M., Köhler, N. & Araneda, C. Bottleneck effects in local populations of fossorial Ctenomys (Rodentia, Ctenomyidae) affected by vulcanism. Heredity 74, 638–646 (1995). https://doi.org/10.1038/hdy.1995.87

Download citation

  • Received: 23 August 1994

  • Issue date: 01 June 1995

  • DOI: https://doi.org/10.1038/hdy.1995.87

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymic variation
  • bottlenecks
  • Ctenomys
  • genetic drift
  • natural catastrophes
  • vulcanism

This article is cited by

  • Changes in selection intensity on the mitogenome of subterranean and fossorial rodents respective to aboveground species

    • William Corrêa Tavares
    • Hector N. Seuánez

    Mammalian Genome (2018)

  • Genomic data reveal a loss of diversity in two species of tuco-tucos (genus Ctenomys) following a volcanic eruption

    • Jeremy L. Hsu
    • Jeremy Chase Crawford
    • Elizabeth A. Hadly

    Scientific Reports (2017)

  • The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand

    • Juha Merilä
    • Mats Björklund
    • Allan J Baker

    Heredity (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited