Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Comparison of allozyme variability in a native and an introduced species of Lonicera
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 1995

Comparison of allozyme variability in a native and an introduced species of Lonicera

  • Kristina A Schierenbeck1,2,
  • J L Hamrick3 &
  • Richard N Mack1 

Heredity volume 75, pages 1–9 (1995)Cite this article

  • 1011 Accesses

  • 30 Citations

  • Metrics details

Abstract

Levels of allozyme variation are compared between a diploid invasive plant species, Lonicera japonica Thunb. (2n = 18) and its polyploid native congener, Lonicera sempervirens L. (2n = 36). Both are woody perennials and were sampled within the native range of L. sempervirens in the south-eastern United States where L. japonica has been an invader since the late 19th century. Genetic structure and allozyme diversity were determined for nine and ten populations of L. sempervirens and L. japonica, respectively. Genetic variation within L. japonica is similar to that in other species with similar life history traits (per cent polymorphic loci, Ps = 75 per cent, mean alleles per polymorphic locus, Aps = 2.28, and total genetic diversity, Ht = 0.216); L. sempervirens has even higher genetic variation than L. japonica (Ps = 91 per cent, Aps = 2.60 and Ht = 0.283). Although both species have high levels of genetic diversity, this may be less important than their life history traits to their success in early successful habitats. However, establishment of a relationship between success in naturalization for woody perennials and levels of genetic diversity is hampered by the paucity of comparable records for other native: alien congeneric pairs.

Similar content being viewed by others

Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition

Article 14 March 2022

De novo chromosome-level genome assembly of Chinese motherwort (Leonurus japonicus)

Article Open access 09 January 2024

Genetic diversity, population structure, and DNA fingerprinting of Ailanthus altissima var. erythrocarpa based on EST-SSR markers

Article Open access 07 November 2023

Article PDF

References

  • Adams, W T, and Joly, R J. 1980. Genetics of allozyme variants in loblolly pine. J Hered, 71, 33–40.

    Article  CAS  Google Scholar 

  • Ammal, E K J, and Saunders, B. 1952. Chromosome numbers in species of Lonicera. Kew Bull, 4, 539–541.

    Article  Google Scholar 

  • Baker, H G. 1965. Characteristics and modes of origin of weeds. In: Baker, H. G. and Stebbins, G. L. (eds) The Genetics of Colonizing Species, pp. 147–172. Academic Press, New York.

    Google Scholar 

  • Baker, H G. 1974. The evolution of weeds. Ann Rev Ecol Syst, 5, 1–24.

    Article  Google Scholar 

  • Baker, H G. 1986. Patterns of plant invasion in North America. In: Mooney, H. A. and Drake, J. A. (eds) Ecology of Biological Invasions of North America and Hawaii, pp. 44–57. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Barrett, S C H, and Richardson, B J. 1986. Genetic attributes of invading species. In: Groves, R. H. and Burdon, J. J. (eds) Ecology of Biological Invasions, pp. 21–33. Cambridge University Press, Melbourne, Australia.

    Google Scholar 

  • Barrett, S C H, and Shore, J S. 1989. Isozyme variation in colonizing plants. In: Soltis, D. E. and Soltis, P. S. (eds) Isozymes in Plant Biology, pp. 106–126. Dioscorides Press, Portland, OR.

    Chapter  Google Scholar 

  • Brown, A H D, and Marshall, D R. 1981. Evolutionary changes accompanying colonization in plants. In: Scudder, G. C. E. and Reveal, J. L. (eds) Colonization, Succession and Stability, pp. 351–363. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Brown, A H D, Matheson, A C, and Eldridge, K G. 1975. Estimation of the mating system of Eucalyptus obliqua L'Heret by using enzyme polymorphisms. Aust J Bot, 23, 931–949.

    Article  CAS  Google Scholar 

  • Godt, M J W, and Hamrick, J L. 1991. Genetic variation in Lathyrus latifolius (Leguminosae). Am J Bot, 78, 1163–1171.

    Article  Google Scholar 

  • Gottlieb, L D. 1981. Gene numbers in species of Asteraceae that have different chromosome numbers. Proc Natl Acad Sci USA, 78, 3726–3729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, A J. 1986. Do invading species have definable genetic characteristics? Phil Trans R Soc B, 314, 655–674

    Article  Google Scholar 

  • Hamrick, J L, and Godt, M J W. 1989. Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp. 43–63. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hamrick, J L, Godt, M J W, and Sherman-Broyles, S L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95–124.

    Article  Google Scholar 

  • Hamrick, J L, Linhart, Y B, and Mitton, J B. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecol Syst, 10, 173–200.

    Article  Google Scholar 

  • Handel, S N. 1983. Pollination ecology, plant population structure and gene flow. In: Real, L. A. (ed) Pollination Biology, pp. 163–211. Academic Press, New York.

    Chapter  Google Scholar 

  • Hedrick, P W. 1985. Genetics of Populations. Jones and Bartlett, Boston.

    Google Scholar 

  • Johnsgard, P A. 1983. The Hummingbirds of North America. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Leatherman, A D. 1955. Ecological Life-history of Lonicera japonica Thunb. Ph.D. Thesis, University of Tennessee, Knoxville, TN.

  • Li, C C, and Horvitz, D G. 1953. Some methods of estimating the inbreeding coefficient. Am J Hum Genet, 5, 107–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loveless, M D, and Hamrick, J L. 1984. Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst, 15, 65–95.

    Article  Google Scholar 

  • Mack, R N. 1985. Invading plants: their potential contribution to population biology. In: White, J. (ed.) Studies on Plant Demography: J. L. Harper Festschrift, pp. 127–142. Academic Press, London.

  • Mack, R N. 1991. The commercial seed trade: an early disperser of weeds in the United States. Econ Bot, 45, 257–273.

    Article  Google Scholar 

  • Mitton, J B, Linhart, Y B, Hamrick, J L, and Beckman, J S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range. Theor Appl Genet, 51, 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Moore, N J, and Moran, G F. 1989. Microgeographic patterns of allozyme variation in Casuarina cunninghamiana within and between the Murrumbidge and coastal drainage systems. Aust J Bot, 37, 181–192.

    Article  Google Scholar 

  • Moran, G F, Bell, J C, and Turnbull, J W. 1989a. A cline in genetic diversity in River she-oak (Casuarina cunninghamiana). Aust J Bot, 37, 169–180.

    Article  Google Scholar 

  • Moran, G F, Muona, O, and Bell, J C. 1989b. Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica, 21, 250–256.

    Article  Google Scholar 

  • Nel, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet, 41, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oosting, H J. 1942. An ecological analysis of the plant communities of the Piedmont, North Carolina. Am Midi Nat, 28, 1–126.

    Article  Google Scholar 

  • Paneida, F D, and Carstairs, S A. 1989. Isozymic discrimination of tropical Australian populations of mesquite (Prosopis spp.); implication for biological control. Weed Res, 29, 157–165.

    Article  Google Scholar 

  • Radford, A E, Ahles, H E, and Bell, C R. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill.

    Google Scholar 

  • Roose, M L, and Gottlieb, L D. 1976. Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution, 30, 818–830.

    Article  CAS  PubMed  Google Scholar 

  • Sasek, T W. 1983. Growth and Biomass Allocation Patterns of Lonicera japonica Thunb. and Lonicera sempervirens L. under Carbon Dioxide Enrichment. M.S. Thesis, Duke University, Durham, NC.

  • Sasek, T W, and Strain, B R. 1991. Effects of C02 enrichment on the growth, and morphology of a native and an introduced honeysuckle vine. Am J Bot, 78, 69–75.

    Article  CAS  Google Scholar 

  • Sax, K, and Kribs, D A. 1930. Chromosomes and phylogeny in Caprifoliaceae. J Arnold Arbort, 11, 147–153.

    Google Scholar 

  • Schierenbeck, K A. 1992. Comparative Ecological and Genetic Studies Between a Native (Lonicera sempervirens L.) and an introduced vine (L. japonica Thunb.). Ph.D. Thesis, Washington State University, Pullman, WA.

  • Shaw, C R, and Prasad, R. 1970. Starch gel electrophoresis of enzymes - a comparison of recipes. Biochem Genet, 4, 297–320.

    Article  CAS  PubMed  Google Scholar 

  • Slezak, W F. 1976. Lonicera japonica Thunb., an Aggressive Introduced Species in a Mature Forest Ecosystem. M.S. Thesis, Rutgers University, New Brunswick, NJ.

  • Snow, B, and Snow, D. 1988. Birds and Berries, A Study of an Ecological Interaction. T. and A. D. Poyser, Calton, U.K.

    Google Scholar 

  • Soltis, D E, Haufler, C H, Darrow, D C, and Gastony, G J. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J, 73, 9–27.

    Article  Google Scholar 

  • Stebbins, G L. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold, London.

    Google Scholar 

  • Surles, S C, Hamrick, J L, and Bongarten, B C. 1989. Allozyme variation in black locust (Robinia pseudoacacia). Can J Forest Res, 19, 471–479.

    Article  Google Scholar 

  • Vitousek, P. 1986. Biological invasions and ecosystem properties: can species make a difference. In: Mooney, H. A. and Drake, J. A. Drake (eds) Ecology of Biological Invasions of North America and Hawaii, pp. 163–176. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Waddington, K D. 1983. Foraging behavior of pollinators. In: Real, L. A. (ed.) Pollination Biology, pp. 213–239. Academic Press, New York.

    Chapter  Google Scholar 

  • Warwick, S I. 1990. Allozyme and life-history variation in five northwardly colonizing North American weed species. Pl SystEvol, 169, 41–54.

    CAS  Google Scholar 

  • Weeden, N F, and Wendel, J F. 1989. Genetics of plant isozymes. In: Soltis, D. E. and Soltis, P. S. (eds) Isozymes in Plant Biology, pp. 46–72. Dioscorides Press, Portland, OR.

    Chapter  Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Pagayo. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1922. Coefficients of inbreeding and relationship. Am Nat, 56, 330–338.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported under Contract No. DE-AC09-76SROO-819 between the U.S. Department of Energy and the University of Georgia, NSF doctoral dissertation improvement grant BSR-8914717 to K.A.S. and R.N.M., Sigma Xi, the Hardman Foundation and The Nature Conservancy. The authors thank M. Rodgers and J. W. Eckert for help with collecting plant samples, D. E. and R S. Soltis for the use of their laboratory during preliminary data collection, S. Sher-man-Broyles, E. Berg, J. Tyrell, L. Manning and S. Dil-lard for laboratory assistance, M. D. Loveless and A. Schnabel for the use of the computer program for data analysis, and D. E. Soltis, A. Schnabel and S. Warwick for comments on the manuscript.

Author information

Authors and Affiliations

  1. Department of Botany, Washington State University, Pullman, 99163, WA, USA

    Kristina A Schierenbeck & Richard N Mack

  2. Savannah River Ecology Laboratory, Aiken, 29802, SC, USA

    Kristina A Schierenbeck

  3. Departments of Botany and Genetics, University of Georgia, Athens, 30602, GA, USA

    J L Hamrick

Authors
  1. Kristina A Schierenbeck
    View author publications

    Search author on:PubMed Google Scholar

  2. J L Hamrick
    View author publications

    Search author on:PubMed Google Scholar

  3. Richard N Mack
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schierenbeck, K., Hamrick, J. & Mack, R. Comparison of allozyme variability in a native and an introduced species of Lonicera. Heredity 75, 1–9 (1995). https://doi.org/10.1038/hdy.1995.97

Download citation

  • Received: 16 June 1994

  • Issue date: 01 July 1995

  • DOI: https://doi.org/10.1038/hdy.1995.97

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genetic variation
  • introduced populations
  • Lonicera japonica
  • Lonicera sempervirens
  • native populations

This article is cited by

  • Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    • Jeffrey T Foster
    • Gerard J Allan
    • Paul Keim

    BMC Plant Biology (2010)

  • Classical biological control: exploiting enemy escape to manage plant invasions

    • Heinz Müller-Schärer
    • Urs Schaffner

    Biological Invasions (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited