Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 1996

Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility

  • Ary A Hoffmann1,
  • David Clancy1 &
  • Jacinta Duncan1 

Heredity volume 76, pages 1–8 (1996)Cite this article

  • 2112 Accesses

  • 218 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Microbes of the genus Wolbachia are transmitted by their hosts via the maternal parent and are responsible for cytoplasmic incompatibility among insect populations. This phenomenon can result in Wolbachia spreading through natural populations as previously demonstrated in Drosophila simulans. Here we describe another Wolbachia infection in D. simulans that does not cause cytoplasmic incompatibility. This is a property of the Wolbachia rather than the nuclear background. The infection occurs at a low frequency in natural populations from eastern Australia. The infection shows perfect maternal transmission in the field and does not cause any detectable deleterious effects on its host. These findings suggest that the Wolbachia infection behaves like a neutral variant in populations. The infection may represent an evolutionary outcome of interactions between Wolbachia infections and their hosts.

Similar content being viewed by others

Wolbachia reduces virus infection in a natural population of Drosophila

Article Open access 25 November 2021

The cellular lives of Wolbachia

Article 10 July 2023

Comparative analysis of Wolbachia maternal transmission and localization in host ovaries

Article Open access 14 June 2024

Article PDF

References

  • Boyle, L, O'Neill, S L, Robertson, H, and Karr, T L. 1993. Horizontal transfer of Wolbachia pipientis by microinjection of egg cytoplasm: infection levels and the expression of cytoplasmic incompatibility in Drosophila. Science, 260, 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer, J A J, and Werren, J H. 1993. Cytoplasmic incompatibility and bacterial density in Nasonia vitri-pennis. Genetics, 135, 565–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breeuwer, J A J, Stouthamer, R, Barns, S M, Pelletier, D A, Weisburg, W G, and Werren, J H. 1992. Pylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia Hymenoptera, Pteromalidae) based on 16S ribosomal sequences. Insect Mol Biol, 1, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Caspari, E, and Watson, G S. 1959. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 13, 568–570.

    Article  Google Scholar 

  • Fine, P E M. 1978. On the dynamics of symbiont-dependent cytoplasmic incompatibility in culicine mosquitoes. J Invert Pathol, 30, 10–18.

    Article  Google Scholar 

  • Gallo, A J. 1973. Morphological distinction between female Drosophila melanogaster and female D. simulans. Cienc cult San Paulo, 25, 341–345.

    Google Scholar 

  • Giordano, R, O'Neill, S L, and Robertson, H M. 1995. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics, 140, 1307–1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, A A, and Turelli, M. 1988. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics, 119, 435–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, A A, Turelli, M, and Simmons, G M. 1986. Unidirectional incompatibility between populations of Drosophila simulans. Evolution, 40, 692–701.

    Article  PubMed  Google Scholar 

  • Hoffmann, A A, Turelli, M, and Harshman, L G. 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics, 126, 933–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, A A, Clancy, D J, and Merton, E. 1994. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics, 136, 993–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holden, P R, Jones, P, and Brookfield, J F Y. 1993. Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res, 62, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Kambhampati, S, Rai, K S, and Burgun, S J. 1993. Unidirectional cytoplasmic incompatibility in the mosquito, Aedes albopictus. Evolution, 47, 673–677.

    Article  PubMed  Google Scholar 

  • Langley, C H, Macdonald, J, Miyashita, N, and Aguade, M. 1993. Lack of correlation between interspecific divergence and intraspecific polymorphism at the suppressor of forked region in Drosophila melanogaster and Drosophila simulans. Proc Natl Acad Sci USA, 90, 1800–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montchamp-Moreau, C, Ferveur, J-F, and Jacques, M. 1991. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics, 129, 399–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigro, L, and Prout, T. 1990. Is there selection on RFLP differences in mitochondrial DNA? Genetics, 125, 551–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neill, S L, and Karr, T L. 1990. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature, 348, 178–180.

    Article  CAS  PubMed  Google Scholar 

  • O'Neill, S L, Giordano, R. Colbert, A M E, Karr, T L, and Robertson, H M. 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA, 89, 2699–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset, F, Vautrin, D, and Solignac, M. 1992. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc R Soc B, 247, 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. Freeman, New York.

    Google Scholar 

  • Solignac, M, Vautrin, D, and Rousset, F. 1994. Widespread occurrence of the proteobacteria Wolbachia and partial incompatibility in Drosophila melanogaster. Cr Acad Sci Paris, Ser III Sciences de la vie, 317, 461–470.

    Google Scholar 

  • Stevens, L. 1989. Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invert Pathol, 53, 78–84.

    Article  CAS  Google Scholar 

  • Stevens, L, and Wade, M J. 1990. Cytoplasmically inherited reproductive incompatibility in Tribolium flour beetles: the rate of spread and effect on population size. Genetics, 124, 367–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stouthamer, R, Breeuwer, J A J, Luck, R F, and Werren, J H. 1993. Molecular identification of microorganisms associated with parthenogenesis. Nature, 361, 66–68.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M. 1994. Evolution of incompatiblity-inducing microbes and their hosts. Evolution, 48, 1500–1513.

    Article  PubMed  Google Scholar 

  • Turelli, M, and Hoffmann, A A. 1991. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 353, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M, and Hoffmann, A A. 1995. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics, 140, 1319–1338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turelli, M, Hoffmann, A A, and McKechnie, S W. 1992. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132, 713–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade, M J, and Stevens, L. 1985. Microorganism mediated reproductive isolation in flour beetles (genus Tribolium). Science, 227, 527–528.

    Article  CAS  PubMed  Google Scholar 

  • Yen, J H, and Barr, A R. 1973. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invert Pathol, 38, 409–418.

    Google Scholar 

  • Zar, J H. 1984. Biostatistical Analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Genetics and Human Variation, La Trobe University, Bundoora, 3083, Victoria, Australia

    Ary A Hoffmann, David Clancy & Jacinta Duncan

Authors
  1. Ary A Hoffmann
    View author publications

    Search author on:PubMed Google Scholar

  2. David Clancy
    View author publications

    Search author on:PubMed Google Scholar

  3. Jacinta Duncan
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, A., Clancy, D. & Duncan, J. Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76, 1–8 (1996). https://doi.org/10.1038/hdy.1996.1

Download citation

  • Received: 19 December 1994

  • Issue date: 01 January 1996

  • DOI: https://doi.org/10.1038/hdy.1996.1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cytoplasmic incompatibility
  • Drosophila simulans
  • host-parasite evolution
  • maternal effects

This article is cited by

  • The cellular lives of Wolbachia

    • Jillian Porter
    • William Sullivan

    Nature Reviews Microbiology (2023)

  • Pathogens are an important driving force for the rapid spread of symbionts in an insect host

    • Dongxiao Zhao
    • Zhichun Zhang
    • Huifang Guo

    Nature Ecology & Evolution (2023)

  • Effects of Wolbachia infection on fitness-related traits in Drosophila melanogaster

    • Svitlana V. Serga
    • Oleksandr M. Maistrenko
    • Iryna A. Kozeretska

    Symbiosis (2021)

  • Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects

    • Corinne M. Stouthamer
    • Suzanne E. Kelly
    • Martha S. Hunter

    BMC Microbiology (2019)

  • A Wolbachia infection from Drosophila that causes cytoplasmic incompatibility despite low prevalence and densities in males

    • Kelly M. Richardson
    • Philippa C. Griffin
    • Ary A. Hoffmann

    Heredity (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited