Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Association of quantitative trait loci for plant height with major dwarfing genes in rice
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1996

Association of quantitative trait loci for plant height with major dwarfing genes in rice

  • Ning Huang1,
  • Brigitte Courtois1,2,
  • Gurdev S Khush1,
  • Hongxuan Lin1,3 nAff5,
  • Guoliang Wang1 nAff4,
  • Ping Wu1,2 &
  • …
  • Kangle Zheng3 nAff5 

Heredity volume 77, pages 130–137 (1996)Cite this article

  • 1585 Accesses

  • 73 Citations

  • Metrics details

Abstract

Quantitative trait loci (QTLs) for plant height in rice were mapped on to RFLP maps in five populations, whose sizes varied from 135 to 250. A total of 23 QTLs were located in all 12 rice chromosomes, and eight of these QTLs were shared by at least two populations. The positions of the 23 mapped QTLs were compared to the positions of 13 major dwarfing or semi-dwarfing genes previously linked to RFLP markers. Results indicated that all 13 dwarfing or semi-dwarfing genes were in close proximity to the QTLs, providing evidence to support the hypothesis that QTLs and major genes were different alleles of the same loci.

Similar content being viewed by others

The identification of grain size genes by RapMap reveals directional selection during rice domestication

Article Open access 28 September 2021

Dynamic analysis of QTLs on plant height with single segment substitution lines in rice

Article Open access 31 March 2022

Rice QTL hotspots related with seed grain size, shape, weight, and color based on genome wide association study and linkage mapping

Article Open access 01 July 2025

Article PDF

References

  • Abenes, M L P, Tabien, R E, McCouch, S R, Ikeda, R, Ronald, P, Khush, G S, and Huang, N. 1994. Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice. Euphytica, 76, 81–87.

    Article  CAS  Google Scholar 

  • Ausubel, F M, Brent, R, Kingston, R E, Moore, D D, Seidman, J G. Smith, J A, and Struhl, K. 1993. Current Protocols in Molecular Biology. John Wiley and Sons, New York.

    Google Scholar 

  • Beavis, W D, Grant, D, Albertsen, M, and Fincher, R. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 83, 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Causse, M A, Fulton, T M, Cho, Y G, Ahn, S N, Chun-Wongse, J, and Wu, K. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138, 1251–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champoux, M C, Wang, G, Sarkarung, S, MacKill, D J, O'Toole, J C, Huang, N, and McCouch, S R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 90, 969–981.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y G, Eun, M Y, McCouch, S R, and Chae, Y A. 1994. The semidwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor Appl Genet, 89, 54–59.

    Article  CAS  PubMed  Google Scholar 

  • Huang, N, McCouch, S, Mew, T, Parco, A, and Guidedoni, E. 1994. Development of an RFLP map from a doubled haploid population in rice. Rice Genet Newsl, 11, 134–137.

    Google Scholar 

  • Ideta, O, Yoshimura, A, Matsumoto, T, Tsunematsu, H, and Iwata, N. 1992. Integration of conventional and RFLP linkage maps in rice. I. Chromosomes, 1 2, 3 and 4. Rice Genet Newsl, 9, 128–129.

    Google Scholar 

  • Irri. 1975. Parentage of IRRI crosses IR1-IR50,000. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Irri. 1988. Standard evaluation system for rice. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Ishii, T, Brar, D S, Multani, D S, and Khush, G S. 1994. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome, 37, 217–221.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, T. 1993. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl, 10, 7–39.

    Google Scholar 

  • Kishimoto, N, Foolad, M R, Shimosaka, E, Matsuura, S, and Saito, A. 1993. Alignment of molecular and classical linkage maps of rice, Oryza sativa. PI. Cell Rep, 12, 457–461.

    CAS  Google Scholar 

  • Kurata, N, Nagamura, Y, Tamamoto, K, Harushima, Y, Sue, N, and Wu, J. et al. 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 8, 365–372.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E S, and Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E S, Green, P, Abrahamson, J, Barlow, A, Daly, M J, Lincoln, S E, and Newburg, L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Liang, C Z, Gu, M H, Pan, X B, Liang, G H, and Zhu, L H. 1994. RFLP tagging of a new semi-dwarfing gene in rice. Theor Appl Genet, 88, 898–900.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H, Qian, H, Zhuang, J, Lu, J, Min, S, and Xiong, Z. et al. 1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet (in press).

    Article  CAS  PubMed  Google Scholar 

  • MacKill, D J, Salam, M A, Wang, Z Y, and Tanksley, S D. 1993. A major photoperiod-sensitivity gene tagged with RFLP and isozyme markers in rice. Theor Appl Genet, 85, 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, D S. 1985. A possible technique for isolating genie DNA for quantitative traits in plants. J Theor Biol, 117, 1–10.

    Article  CAS  Google Scholar 

  • Ronald, P C, Albano, B, Tabien, R, Abenes, L, Wu, K, McCouch, S R, and Tanksley, S D. 1992. Genetic and physical analysis of the rice bacterial blight disease resistance locus Xa21. Mol Gen Genet, 236, 113–120.

    CAS  PubMed  Google Scholar 

  • Saito, A, Yano, M, Kishimoto, N, Nakagahra, M, Yoshimura, A, and Saito, A. et al. 1991. Linkage map of restriction fragment length polymorphism loci in rice. Jap J Breeding, 41, 665–670.

    Article  CAS  Google Scholar 

  • Stuber, C W, Lincoln, S E, Wolff, D W, Helentjaris, T, and Lander, E S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132, 823–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G L, MacKill, D J, Bonman, J M, McCouch, S R, Champoux, M, and Nelson, R. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 136, 1421–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, M N V, Pande, N, Nair, S, Mohan, M, and Bennett, J. 1994. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet, 82, 489–498.

    Article  Google Scholar 

  • Wu, P, Zhang, G, Huang, N, and Ladha, J K. 1995a. Non-allelic interaction conditioning spikelet sterility in an F2 population of indica/japonica cross in rice. Theor Appl Genet, 91, 825–829.

    Article  CAS  PubMed  Google Scholar 

  • Wu, P, Zhang, G, Ladha, J K, McCouch, S R, and Huang, N. 1995b. Molecular-marker-facilitated investigation on the ability to stimulate N2 fixation in the Rhizosphere by irrigated rice plants. Theor Appl Genet, 91, 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J, Fulton, T, McCouch, S R, Tanksley, S D, Kishi-Motot, N, and Ohsawa, R. et al. 1992. Progress in integration of the molecular maps of rice. Rice Genet Newsl, 9, 124–128.

    Google Scholar 

  • Yoshimura, S, Yoshimura, A, Saito, A, Kishimoto, N, Kawase, M, and Yano, M. et al. 1992. RFLP analysis of introgressed chromosomal segments in three near-isogenic lines of rice bacterial blight resistance genes, Xa-1, Xa-3 and Xa-4. Jap. J Genet, 67, 29–37.

    CAS  Google Scholar 

  • Yu, Z. 1991. Molecular mapping of rice (Oryza sativa L.) genes via linkage to restriction fragment length polymorphism (RFLP) markers. Ph. D. Dissertation, Graduate School of Cornell University.

  • Zhang, G, Angeles, E R, Abenes, M L P, Khush, G S, and Huang, N. 1994. Molecular mapping of a bacterial blight resistance gene on chromosome 8 in rice. Rice Genet Newsl, 11, 142–144.

    Google Scholar 

Download references

Author information

Author notes
  1. Guoliang Wang

    Present address: Department of Plant Pathology, University of California, Davis, CA, 95616, U.S.A.

  2. Hongxuan Lin & Kangle Zheng

    Present address: Department of Soil Sciences and Plant Nutrition, Zhejiang Agricultural University, Hangzhou, China

Authors and Affiliations

  1. International Rice Research Institute, PO Box 933, Manila, 1099, Philippines

    Ning Huang, Brigitte Courtois, Gurdev S Khush, Hongxuan Lin, Guoliang Wang & Ping Wu

  2. Centre de Cooperation Internationale en Recherche Agronomique pour le Development, Montpellier, France

    Brigitte Courtois & Ping Wu

  3. China National Rice Research Institute, Hangzhou, China

    Hongxuan Lin & Kangle Zheng

Authors
  1. Ning Huang
    View author publications

    Search author on:PubMed Google Scholar

  2. Brigitte Courtois
    View author publications

    Search author on:PubMed Google Scholar

  3. Gurdev S Khush
    View author publications

    Search author on:PubMed Google Scholar

  4. Hongxuan Lin
    View author publications

    Search author on:PubMed Google Scholar

  5. Guoliang Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Ping Wu
    View author publications

    Search author on:PubMed Google Scholar

  7. Kangle Zheng
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, N., Courtois, B., Khush, G. et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity 77, 130–137 (1996). https://doi.org/10.1038/hdy.1996.117

Download citation

  • Received: 02 August 1995

  • Issue date: 01 August 1996

  • DOI: https://doi.org/10.1038/hdy.1996.117

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • molecular markers
  • Oryza sativa
  • QTLs
  • RFLP

This article is cited by

  • Characterizing the oligogenic architecture of plant growth phenotypes informs genomic selection approaches in a common wheat population

    • Noah DeWitt
    • Mohammed Guedira
    • Gina Brown-Guedira

    BMC Genomics (2021)

  • Molecular Dissection of Seedling Salinity Tolerance in Rice (Oryza sativa L.) Using a High-Density GBS-Based SNP Linkage Map

    • Teresa B. De Leon
    • Steven Linscombe
    • Prasanta K. Subudhi

    Rice (2016)

  • Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.)

    • Beata MyÅ›ków
    • Stefan StojaÅ‚owski

    Journal of Applied Genetics (2016)

  • QTL mapping for nitrogen use efficiency and related physiological and agronomical traits during the vegetative phase in rice under hydroponics

    • Hanh Thi Thuy Nguyen
    • Duong Thuy Dang
    • Pierre Bertin

    Euphytica (2016)

  • Tagging quantitative trait loci for heading date and plant height in important breeding parents of rice (Oryza sativa)

    • Seonghee Lee
    • Melisa H. Jia
    • Guangjie Liu

    Euphytica (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited