Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon)
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1996

Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon)

  • J A Sánchez1,
  • C Clabby2,
  • D Ramos1,
  • G Blanco1,
  • F Flavin2,
  • E Vázquez1 &
  • …
  • R Powell2 

Heredity volume 77, pages 423–432 (1996)Cite this article

  • 1123 Accesses

  • 154 Citations

  • Metrics details

Abstract

We describe genetic variation at three microsatellite single loci and six allozyme loci of seven natural Atlantic salmon populations from Ireland and Spain. A comparison of genetic variability detected at both types of loci is performed. Also, the relative value of microsatellite single locus variability with regard to the identification of individual salmon populations is assessed. Microsatellite loci are shown to display higher levels of variation than allozyme loci. Mean number of alleles (6 ± 1.53) and heterozygosity (0.46 ± 0.04) at microsatellite loci are greater than those found for allozymes (1.85 ±0.05 and 0.21 + 0.03, respectively), and some microsatellite alleles appear to be specific for a location or geographical area. Allozyme and microsatellite variation show the same pattern of differentiation between populations with Irish and Spanish populations grouped into different clusters. However, greater values of genetic distance were found among microsatellite (D = 0.0747 + 0.011) rather than among allozyme loci (D = 0.0449 + 0.008). These results provide evidence that microsatellite-based analysis of genetic variation will be useful in the identification of individual populations of Atlantic salmon.

Similar content being viewed by others

Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods

Article Open access 10 November 2022

Genomic footprints of bottleneck in landlocked salmon population

Article Open access 25 April 2023

Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

Article Open access 03 December 2021

Article PDF

References

  • Aebersold, P B, Winans, G A, Teel, D J, Milner, G B, and Utter, F M. 1987. Manual for Starch Gel Electrophoresis: a Method for the Detection of Genetic Variation. Noaa Tech. Rep. NMFS. National Marine Fisheries Service. Seattle, WA.

    Google Scholar 

  • Ayala, F J, and Powell, J R. 1972. Allozymes as diagnostic characters of sibling species of Drosophila. Proc Natl Acad Sci USA, 69, 1094–1096.

    Article  CAS  Google Scholar 

  • Blanco, G, Sánchez, J A, Vázquez, E, Rubio, J, and Utter, F M. 1992. Genetic differentiation among natural European populations of Atlantic salmon, Salmo salar L., from drainages of the Atlantic Ocean. Anim Genet, 23, 11–18.

    Article  CAS  Google Scholar 

  • Britten, R J, and Kohne, D. 1968. Repeated sequences in DNA. Science, 161, 529–540.

    Article  CAS  Google Scholar 

  • Clayton, J W, and Tretiak, D N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Board Can, 29, 1169–1172.

    Article  CAS  Google Scholar 

  • Cross, T F, and King, J. 1983. Genetic effects of hatchery rearing in Atlantic salmon. Aquaculture, 33, 33–40.

    Article  Google Scholar 

  • Cross, T F, and Ward, R D. 1980. Protein variation and duplicate loci in the Atlantic salmon, Salmo salar L. Genet Res, 36, 147–165.

    Article  CAS  Google Scholar 

  • Crozier, W W, and Moffet, I J J. 1989. Amount and distribution of biochemical and genetic variation among wild populations and hatchery stocks of Atlantic salmon, (Salmo salar L.), from north-east Ireland. J Fish Biol, 35, 665–677.

    Article  Google Scholar 

  • Davidson, W S, Birt, T P, and Green, J M. 1989. A review of genetic variation in Atlantic salmon, Salmo salar L., and its importance for stock identification, enhancement programmes and aquaculture. J Fish Biol, 34, 547–560.

    Article  Google Scholar 

  • Elo, K, Vourinen, J A, and Niemelä, E. 1994. Genetic resources of Atlantic salmon (Salmo salar L.) in Teno and Näätämö Rivers, northernmost Europe. Hereditas, 120, 19–28.

    Article  Google Scholar 

  • Estoup, A, Presa, P, Krieg, F, Vaiman, D, and Guyo-Mard, R. 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity, 71, 488–496.

    Article  CAS  Google Scholar 

  • Galvin, P, Cross, T F, and Ferguson, A. 1994. Genetic differentiation and gene flow in Atlantic salmon, Salmo salar L.: a case study of the River Shannon system in Ireland. Aquacult Fish Manage, 25 (suppl. 2), 131–145.

    Google Scholar 

  • Hamada, H, Petrino, M G, and Kakunaga, T. 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA, 79, 6465–6469.

    Article  CAS  Google Scholar 

  • Hearne, C M, Ghosh, S, and Todd, J A. 1992. Micro-satellites for linkage analysis of genetic traits. Trends Genet, 8, 288–294.

    Article  CAS  Google Scholar 

  • Hovey, S J, King, D P F, Thompson, D, and Scott, A. 1989. Mitochondrial DNA and allozyme analysis of Atlantic salmon, Salmo salar L., in England and Wales. J Fish Biol, 35, 253–260.

    Article  Google Scholar 

  • Hughes, C R, and Queller, D C. 1993. Detection of highly polymorphic microsatellite loci in species with little allozyme polymorphism. Mol Ecol, 2, 131–137.

    Article  CAS  Google Scholar 

  • Jordan, W C, Youngson, A F, Hay, D W, and Ferguson, A. 1992. Genetic protein variation in natural populations of Atlantic salmon (Salmo salar L.) in Scotland: temporal and spatial variation. Can J Fish Aquat Sci, 49, 1863–1872.

    Article  Google Scholar 

  • Kojonen, M-L. 1989. Electrophoretically detectable genetic variation in natural and hatchery stocks of Atlantic salmon in Finland. Hereditas, 110, 23–35.

    Article  Google Scholar 

  • Kreitman, M. 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature, 304, 412–417.

    Article  CAS  Google Scholar 

  • McElligott, E A, and Cross, T F. 1991. Protein variation in wild Atlantic salmon, with particular reference to southern Ireland. J Fish Biol, 39, 35–42.

    Article  CAS  Google Scholar 

  • Mooney, J, Powell, E, Clabby, C, and Powell, R. 1995. Detection of Aeromonas salmonicida in wild Atlantic salmon using a specific DNA probe test. Dis aquat Org, 21, 131–135.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  Google Scholar 

  • O'Connell, M, Skibinsky, D O F, and Beardmore, J A. 1995. Mitochondrial DNA and allozyme variation in Atlantic salmon (Salmo salar) populations in Wales. Can J Fish Aquat Sci, 52, 171–178.

    Article  CAS  Google Scholar 

  • Payne, R F L, Child, A R, and Forrest, A. 1971. Geographical variation in the Atlantic salmon. Nature, 231, 250–252.

    Article  CAS  Google Scholar 

  • Presa, P, Krieg, F, Estoup, A, and Guyomard, R. 1994. Diversité et gestion génétique de la truite commune: apport de l'étude du polymorphisme des locus protéiques et microsatellites. Génét Séi Évol, 26, 183–202.

    Article  Google Scholar 

  • Ridgway, G J, Sherburne, S W, and Lewis, R D. 1970. Polymorphism in esterases of Atlantic herring. Trans Am Fish Soc, 99, 147–151.

    Article  CAS  Google Scholar 

  • Sánchez, J A, Blanco, G, and Vázquez, E. 1993. Genetic status of Atlantic salmon in Asturias (northern Spain). In: Cloud, J. G. and Thorgaard, G. H. (eds) Genetic Conservation of Salmonid Fishes, pp. 219–225. Plenum Press, New York.

    Chapter  Google Scholar 

  • Sánchez, J A, Blanco, G, Vázquez, E, García, E, and Rubio, J. 1991. Allozyme variation in natural populations of Atlantic salmon in Asturias (northern Spain). Aquaculture, 93, 291–298.

    Article  Google Scholar 

  • Sanger, F, Nicklen, S, and Coulson, A R. 1977. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA, 77, 5463–5467.

    Article  Google Scholar 

  • Shaklee, J B, Allendorf, F W, Morizot, D C, and Whitt, G S. 1990. Gene nomenclature for protein-coding loci in fish. Trans Am Fish Soc, 119, 2–15.

    Article  CAS  Google Scholar 

  • Slettan, A, Olsaker, I, and Lie, O. 1993. Isolation and characterization of variable (GT)n repetitive sequences from Atlantic salmon, Salmo salar L. Anim Genet, 24, 195–197.

    Article  CAS  Google Scholar 

  • Sneath, P H A, and Sokal, R R. 1973. Numerical Taxonomy. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  • Spratt, B G, Hedge, P J, Heesesen, S, Edelman, A, and Broome-Smith, J K. 1986. Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene, 41, 337–342.

    Article  CAS  Google Scholar 

  • Stähl, G. 1987. Genetic population structure of Atlantic salmon. In: Ryman, N. and Utter, F., (eds) Population Genetics and Fishery Management, pp. 121–140. University of Washington Press, Seattle.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1989. BIOSYS-I: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered, 72, 282–302.

    Google Scholar 

  • Taggart, J B, and Ferguson, A. 1990. Hypervariable minisatellite DNA single locus probes for the Atlantic salmon, Salmo salar L. J Fish Biol, 37, 991–993.

    Article  CAS  Google Scholar 

  • Verspoor, E. 1988. Identification of stocks in the Atlantic salmon. In: Stroud, R. H. (ed.) Proceedings of the Symposium on Future Atlantic Salmon Management, pp. 37–46. Marine Recreational Fisheries Series, Savannah, GA.

    Google Scholar 

  • Verspoor, E, and Jordan, W C. 1989. Genetic variation at the Me-2 locus in the Atlantic salmon within and between rivers: evidence for selective maintenance. J Fish Biol, 35, 205–213.

    Article  Google Scholar 

  • Verspoor, E, and Jordan, W C. 1994. Detection of an NAD+-dependent malic enzyme locus in the Atlantic salmon, Salmo salar, and other salmonid fish. Biochem Genet, 32, 105–117.

    Article  CAS  Google Scholar 

  • Weber, J L. 1990. Informativeness of human (dC-dA)n (dG-dT)n polymorphism. Genomics, 7, 524–530.

    Article  CAS  Google Scholar 

  • Wilson, I F, Bourke, E A, and Cross, T F. 1995. A triose-phosphate isomerase polymorphism in the Atlantic salmon, Salmo salar L. Biochem Genet, 33, 25–33.

    Article  CAS  Google Scholar 

  • Wintero, A K, Fredholm, M, and Thomsen, P D. 1992. Variable (dG-dT)n, (dC-dA)n sequences in the porcine genome. Genomics, 12, 281–288.

    Article  CAS  Google Scholar 

  • Wong, A K C, Yee, H A, Van De Sande, J H, and Rattner, J B. 1990. Distribution of CT-rich tracts is conserved in vertebrate chromosome. Chromosoma, 99, 344–351.

    Article  CAS  Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations, vol. 4, Variability Within and Among Natural Populations. University of Chicago, Chicago.

    Google Scholar 

Download references

Acknowledgements

Acknowledgements This work was supported by the European Union FAR Programme (AQ-2-493) and Spanish Government (DIGICYT PB 90-0992). For collection of Irish fish, we thank the staff of the Central, Western and Eastern Fisheries Boards (particularly P. Gargan and W. Roche). Also, W. O'Connor and the staff of the Fisheries Conservation Unit, Hydro Generation Group, Electricity Supply Board. C. Clabby is supported by Forbairt and UCG postgraduate fellowships and D. Ramos by a FICYT postgraduate fellowship.

Author information

Authors and Affiliations

  1. Departamento de Biología Funcional, Area de Genética, Universidad de Oviedo, Oviedo, 33071, Spain

    J A Sánchez, D Ramos, G Blanco & E Vázquez

  2. Department of Microbiology, Recombinant DNA Group, University College Galway, Ireland

    C Clabby, F Flavin & R Powell

Authors
  1. J A Sánchez
    View author publications

    Search author on:PubMed Google Scholar

  2. C Clabby
    View author publications

    Search author on:PubMed Google Scholar

  3. D Ramos
    View author publications

    Search author on:PubMed Google Scholar

  4. G Blanco
    View author publications

    Search author on:PubMed Google Scholar

  5. F Flavin
    View author publications

    Search author on:PubMed Google Scholar

  6. E Vázquez
    View author publications

    Search author on:PubMed Google Scholar

  7. R Powell
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, J., Clabby, C., Ramos, D. et al. Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon). Heredity 77, 423–432 (1996). https://doi.org/10.1038/hdy.1996.162

Download citation

  • Received: 23 November 1995

  • Issue date: 01 October 1996

  • DOI: https://doi.org/10.1038/hdy.1996.162

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozyme variation
  • microsatellite variation
  • population genetics
  • Salmo salar

This article is cited by

  • Chromosome aberrations in pressure-induced triploid Atlantic salmon

    • K. A. Glover
    • A. C. Harvey
    • M. F. Solberg

    BMC Genetics (2020)

  • Production and verification of the first Atlantic salmon (Salmo salar L.) clonal lines

    • Tom Johnny Hansen
    • David Penman
    • Per Gunnar Fjelldal

    BMC Genetics (2020)

  • Epistatic regulation of growth in Atlantic salmon revealed: a QTL study performed on the domesticated-wild interface

    • Francois Besnier
    • Monica F. Solberg
    • Kevin A. Glover

    BMC Genetics (2020)

  • Parentage assignment in Salmo trutta strains and their crossbreeds with known mating

    • Gokhan Kalayci
    • Rafet Cagri Ozturk
    • Ilhan Altinok

    Environmental Biology of Fishes (2020)

  • Implications for introgression: has selection for fast growth altered the size threshold for precocious male maturation in domesticated Atlantic salmon?

    • A. C. Harvey
    • O. T. Skilbrei
    • K. A. Glover

    BMC Evolutionary Biology (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited