Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Variation in sex-, stage- and tissue-specific expression of the amylase genes in Drosophila ananassae
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 1996

Variation in sex-, stage- and tissue-specific expression of the amylase genes in Drosophila ananassae

  • Jean-Luc da Lage1,
  • Albert Klarenberg2 &
  • Marie-Louise Cariou1 

Heredity volume 76, pages 9–18 (1996)Cite this article

  • 605 Accesses

  • 10 Citations

  • Metrics details

Abstract

Expression of the amylase multigene family of Drosophila ananassae was investigated in third-instar larvae and adults. A developmental differentiation was found between the Amy1-2 and Amy3-4 gene clusters, the former being preferentially expressed in larvae, the latter in adults. During adult life, we observed a decrease in Amy1-2 expression in males of certain strains. We have raised some arguments for the existence of irans-active regulators, acting as repressors of Amy1-2 in adults. The putative repressors might exhibit a geographical polymorphism, with a fixed active form in Pacific regions and a polymorphic pattern in Africa, thus increasing the diversity observed in adult amylase phenotypes. A clear differentiation between the two gene clusters was also found in tissue-specific activity along the third-instar larval midgut. In the anterior midgut, only Amy1-2 is active, while both gene groups are expressed in the posterior midgut, with an additional subzonation within it.

Similar content being viewed by others

Recurrent evolution and selection shape structural diversity at the amylase locus

Article Open access 04 September 2024

Split intein-mediated protein trans-splicing to express large dystrophins

Article 17 July 2024

Novel approach toward the understanding of genetic diversity based on the two types of amino acid repeats in Erwinia amylovora

Article Open access 19 October 2023

Article PDF

References

  • Abraham, I, and Doane, W W. 1978. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci USA, 75, 4446–4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn, E. 1967. Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas, 58, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Baker, W K. 1975. Linkage desequilibrium over space and time in natural populations of Drosophila montana. Proc Natl Acad Sci USA, 72, 4095–4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, W K. 1980. Evolution of the alpha-esterase duplication within the montana subphylad of the virilis species group of Drosophila. Genetics, 94, 733–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batterham, P, Lovett, J A, Starmer, W T, and Sulli-Van, D T. 1983a. Differential regulation of duplicated alcohol dehydrogenase genes in Drosophila mojavensis. Dev Biol, 96, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Batterham, P, Gritz, E, Starmer, W T, and Sullivan, D T. 1983b. Biochemical characterization of the products of the Adh loci of Drosophila mojavensis. Biochem Genet, 21, 871–883.

    Article  CAS  PubMed  Google Scholar 

  • Batterham, P, Chambers, G K, Starmer, W T, and Sullivan, D T. 1984. Origin and expression of an alcohol dehydrogenase gene duplication in the genus Drosophila. Evolution, 38, 644–657.

    Article  CAS  PubMed  Google Scholar 

  • Benkel, B F, and Hickey, D A. 1986. Glucose repression of amylase gene expression in Drosophila melanogaster. Genetics, 114, 137–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borowsky, R, Borowsky, B, Milani, H, and Greenberg, P. 1985. Amylase variation in the salt marsh amphipod, Gammarus palustris. Genetics, 111, 311–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, C J, Aquadro, C F, and Anderson, W W. 1990. DNA sequence evolution of the amylase multigene family in Drosophila pseudoobscura. Genetics, 126, 131–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crerar, M M, and Rooks, N E. 1987. The structure and expression of amylase genes in mammals: an overview. CRC Crit Rev Biotech, 5, 217–227.

    Article  CAS  Google Scholar 

  • Da Lage, J-L. 1990. Polymorphisme, structure et régulation des gènes de l'amylase chez Drosophila ananassae et espèces affines. Ph.D. Thesis, University of Paris, 7.

  • Da Lage, J-L, Cariou, M-L, and David, J R. 1989. Geographical polymorphism of amylase in Drosophila ananassae and its relatives. Heredity, 63, 67–72.

    Article  PubMed  Google Scholar 

  • Da Lage, J-L, Lemeunier, F, Cariou, M-L, and David, J R. 1992. Multiple amylase genes in Drosophila ananassae and related species. Genet Res, 59, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Daïnou, O, Cariou, M-L, David, J R, and Hickey, D A. 1987. Amylase gene duplication, an ancestral trait in the Drosophila melanogaster species subgroup. Heredity, 59, 245–251.

    Article  PubMed  Google Scholar 

  • David, J, and Clavel, M-F. 1965. Interaction entre le génotype et le milieu d'élevage. Consequences sur les caracteristiques du développement de la Drosophile. Bull Biol Fr Belg, 99, 369–378.

    Google Scholar 

  • Doane, W W. 1969. Drosophila amylases and problems in cellular differentiation. In: Hanly, E. W. (ed.) Problems in Biology: RNA in Development, pp. 73–109. University of Utah Press, Salt Lake City.

    Google Scholar 

  • Doane, W W, Treat-Clemons, L G, Gemmill, R M, Martenson, R E, Levy, J N, Hawley, S A, Buchberg, A M, and Paigen, K. 1983. Genetic mechanism for tissue-specific control of alpha-amylase expression in Drosophila melanogaster. In: Rattazzi, M. C., Scandalios, J. G. and Whitt, G. S. (eds) Isozymes: Current Topics in Biological and Medical Research, vol 9, pp. 63–90. Alan R. Liss, New York.

    Google Scholar 

  • Friedman, T B, Burnett, J B, Lootens, S, Steinman, R, and Wallrath, L L. 1992. The urate oxidase gene of Drosophila pseudoobscura and Drosophila melanogaster: Evolutionary changes of sequence and regulation. J Mol Evol, 34, 62–77.

    Article  CAS  PubMed  Google Scholar 

  • Gumucio, D L, Wiebauer, K, Kaldwell, R M, Samuelson, L C, and Meisler, M H. 1988. Concerted evolution of human amylase genes. Mol Cell Biol, 8, 1197–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley, S A, Norman, R A, Brown, C J, Doane, W W, Anderson, W W, and Hickey, D A. 1990. Amylase gene expression in intraspecific and interspecific somatic transformants of Drosophila. Genome, 33, 501–508.

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa, H. 1953. Biochemical genetics of Bombyx mori (silkworm). Adv Genet, 5, 107–140.

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa, H. 1964. An electrophoretic study on amylase in Drosophila melanogaster. Jap J Genet, 39, 401–411.

    Article  Google Scholar 

  • Klarenberg, A J, and Scharloo, W. 1986. Nonrandom association between structural AMY and regulatory MAP variants in Drosophila melanogaster. Genetics, 114, 875–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klarenberg, A J, Visser, A J S, Willemse, M F M, and Scharloo, W. 1986. Genetic localization and action of regulatory genes and elements for tissue-specific expression of α-amylase in Drosophila melanogaster. Genetics, 114, 1131–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klarenberg, A J, Jacobs, P J M, Vermeulen, C, and Scharloo, W. 1988. Genetic and dietary regulation of tissue-specific expression patterns of alpha amylase in larvae of Drosophila melanogaster. Comp Biochem Physiol, 89B, 143–146.

    CAS  Google Scholar 

  • Laulier, M. 1988. Génétique et systématique évolutives du complexe d'espéces Sphaeroma hookeri Leach, Sphaeroma levii Argano et Sphaeroma rugicauda Leach (Crustacés, Isopodes Flabelliféres). 1. Génétique formelle de onze locus enzymatiques. Génét Séi Évol, 20, 63–74.

    Article  CAS  Google Scholar 

  • Matsuo, Y, and Yamazaki, T. 1986. Genetic analysis of natural populations of Drosophila melanogaster in Japan. VI. Differential regulation of duplicated amylase loci and degree of dominance of amylase activity in different environments. Jap J Genet, 61, 543–558.

    Article  Google Scholar 

  • Mills, L E, Batterham, P, Alegre, J, Starmer, W T, and Sullivan, D T. 1986. Molecular genetic characterization of a locus that contains duplicate ADH genes in Drosophila mojavensis and related species. Genetics, 112, 295–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oxford, G S. 1986. Multiple amylase loci in Asellus (Crustacea: Isopoda): Genetics and linkage. Heredity, 56, 105–110.

    Article  Google Scholar 

  • Payant, V, Abukashawa, S, Sasseville, M, Benkel, B. Hickey, D, and David, J. 1988. Evolutionary conservation of the chromosomal configuration and conservation of amylase genes among eight species of the Drosophila melanogaster species subgroup. Mol Biol Evol, 5, 560–567.

    CAS  PubMed  Google Scholar 

  • Pope, G J, Anderson, M D, and Bremner, T A. 1986. Constancy and divergence of amylase loci in four species of Tribolium (Coleoptera, Tenebrionidae). Comp Biochem Physiol, 83B, 331–333.

    CAS  Google Scholar 

  • Powell, J R, and Lichtenfels, J M. 1979. Population genetics of Drosophila amylase. I. Genetic control of tissue-specific expression in D. pseudoobscura. Genetics, 92, 603–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, R M, and Baker, W K. 1973. Frequency distribution and linkage desequilibrium of active and null esterase isozymes in natural populations of Drosophila montana. Am Nat, 107, 709–726.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1995. Biometry, 3rd edn. Freeman and Co., New York.

    Google Scholar 

  • Wallrath, L R, and Friedman, T B. 1991. Species differences in the temporal pattern of Drosophila urate oxidase gene expression are attributed to trans-acting regulatory changes. Proc Natl Acad Sci USA, 88, 5489–5493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouros, E, and Van Delden, W. 1982. Substrate-preference polymorphism at an esterase locus of Drosophila mojavensis. Genetics, 100, 307–314.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. UPR Populations, Génétique et Évolution, CNRS, Gif sur Yvette cedex, 91198, France

    Jean-Luc da Lage & Marie-Louise Cariou

  2. Zoologisches Institut der Universität München, Seidlstrasse 25, München, D-80335, Germany

    Albert Klarenberg

Authors
  1. Jean-Luc da Lage
    View author publications

    Search author on:PubMed Google Scholar

  2. Albert Klarenberg
    View author publications

    Search author on:PubMed Google Scholar

  3. Marie-Louise Cariou
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Lage, JL., Klarenberg, A. & Cariou, ML. Variation in sex-, stage- and tissue-specific expression of the amylase genes in Drosophila ananassae. Heredity 76, 9–18 (1996). https://doi.org/10.1038/hdy.1996.2

Download citation

  • Received: 03 January 1995

  • Issue date: 01 January 1996

  • DOI: https://doi.org/10.1038/hdy.1996.2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • amylase
  • Drosophila ananassae
  • gene duplication
  • gene regulation
  • midgut
  • multigene family

This article is cited by

  • Origin and evolution of the Amyrel gene in the α-amylase multigene family of Diptera

    • Frédérique Maczkowiak
    • Jean-Luc Da Lage

    Genetica (2006)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited