Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 1996

Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences

  • Carlos Juan1,
  • Pedro Oromi2 &
  • Godfrey M Hewitt1 

Heredity volume 76, pages 392–403 (1996)Cite this article

  • 1130 Accesses

  • 98 Citations

  • Metrics details

Abstract

The genus Hegeter comprises 23 species of darkling beetles (Tenebrionidae) endemic to the Macaronesian archipelagos, with 21 of them exclusive to the Canary Islands. We have sequenced 438 bp of the mitochondrial Cytochrome Oxidase I gene in 17 species (24 taxa) of Canarian Hegeter. Estimates of nucleotide composition, transition/transversion ratios and nucleotide change frequencies are very similar to those found in another tenebrionid Canarian genus Pimelia, indicating that similar molecular mechanisms are driving the sequence evolution. The sequence variation found allows phylogenetic analyses of the genus and the deduction of colonization patterns. These involve sequential island invasion with more rapid establishment and radiation than found in the related beetles of the genus Pimelia.

Similar content being viewed by others

New Canary Islands Roman mediated settlement hypothesis deduced from coalescence ages of curated maternal indigenous lineages

Article Open access 15 May 2024

Distribution of genetic diversity reveals colonization patterns and philopatry of the loggerhead sea turtles across geographic scales

Article Open access 22 October 2020

Mitogenomic resolution of phylogenetic conflicts and adaptive signatures in feliform carnivorans

Article 28 May 2025

Article PDF

References

  • Ancochea, E, Fuster, J M, Ibarrola, E, et al., 1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res, 44, 231–249.

    Article  CAS  Google Scholar 

  • Anguita, F, and Hernan, F. 1975. A propagating fracture model versus a hot spot origin for the Canary Islands. Earth Planet Sci Lett, 27, 11–19.

    Article  Google Scholar 

  • Barrio, E, Latorre, A, and Moya, A. 1994. Phylogeny of the Drosophila obscura species group deduced from mitochondrial DNA sequences. J Mol Evol, 39, 478–488.

    Article  CAS  Google Scholar 

  • Brown, J M, Pellmyr, O, Thompson, J N, and Harrison, R G. 1994. Phylogeny of Greya (Lepidoptera: Prodox-idae), based on nucleotide sequence variation in mitochondrial Cytochrome Oxidase I and II: congruence with morphological data. Mol Biol Evol, 11, 128–141.

    CAS  PubMed  Google Scholar 

  • Desalle, R, Freedman, T, Prager, E M, and Wilson, A C. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol, 26, 157–164.

    Article  CAS  Google Scholar 

  • Doyen, J T. 1972. Familial and subfamilial classification of the Tenebrionoidea (Coleoptera) and a revised generic classification of the Coniontini (Tentyriidae). Quaest Entomol, 8, 357–376.

    Google Scholar 

  • Emerson, B C, and Wallis, G P. 1995. Phylogenetic relationships of the Prodontria (Coleoptera; Scarabaeidae; subfamily Melolonthine), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. Mol Phytogen Evol (in press).

  • Español, F. 1957a. Los Hegeter de las Canarias Orientales (Col. Tenebrionidae). Trabajos del Museo de Zoología (N S Zoológica), 2, 1–16.

    Google Scholar 

  • Español, F. 1957b. Contribución al conocimiento de los Tentyriini de las Canarias Orientales: sobre el preten-dido Gen. Pseudotaltophila Reitt. ‘EOS’ Revista Espa-nola de Entomología, 33, 157–176.

    Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package). Version 3.5c. University of Washington, Seattle.

  • Fitch, W M, and Ye, J. 1991. Weighted parsimony: Does it work? In: Miyamoto, M. M. and Cracraft, J. (eds) Phylogenetic Analysis of DNA Sequences, pp. 147–154. Oxford University Press, Oxford.

    Google Scholar 

  • Funk, D J, Futuyma, D J, Orti, G, and Meyer, A. 1995. Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chryso-melidae: Ophraella). Mol Biol Evol, 12, 627–640.

    CAS  PubMed  Google Scholar 

  • Juan, C, Oromi, P, and Hewitt, G M. 1995. Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae). Proc R Soc B, 261, 173–180.

    Article  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol, 16, 111–120.

    Article  CAS  Google Scholar 

  • Kraus, F, and Miyamoto, M M. 1991. Rapid cladogenesis among Pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool, 40, 117–130.

    Article  Google Scholar 

  • Li, W-H. 1993. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol, 36, 96–99.

    Article  CAS  Google Scholar 

  • Li, W-H, Wu, C-I, and Luo, C-C. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol, 2, 150–174.

    PubMed  Google Scholar 

  • Liu, H, and Beckenbach, A T. 1992. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phytogen Evol, 1, 41–52.

    Article  CAS  Google Scholar 

  • Lunt, D H, Zhang, D-X, Szymura, J M, and Hewitt, G M. 1996. The insect COI gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol (in press).

  • Maddison, W P, and Maddison, D R. 1992. MACCLADE: Analysis of Phylogeny and Character Evolution. Version 3.1. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Oromi, P. 1982a. Los Tenebriónidos de las Islas Canarias. Instituto de Estudios Canarios, 50 Aniversario, 1, 265–292.

  • Oromi, P. 1982b. Distribución de los Tenebrionidae (Coleoptera) en las Islas Atlánticas. Boletim Sociedade Portu-guesa Entomologia, 7, 215–231.

    Google Scholar 

  • Pamilo, P, and Nei, M. 1988. Relationships between gene trees and species trees. Mol Biol Evol, 5, 568–583.

    CAS  Google Scholar 

  • Saitou, N, and Nei, M. 1987. The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–425.

    CAS  Google Scholar 

  • Saraste, M. 1990. Structural features of cytochrome oxidase. Q Rev Biophys, 23, 331–366.

    Article  CAS  Google Scholar 

  • Sarich, V M, and Wilson, A C. 1967. Rates of albumin evolution in primates. Proc Natl Acad Sci USA, 58, 142–148.

    Article  CAS  Google Scholar 

  • Swofford, D. 1993. PAUP: Phylogenetic Analysis Using Parsimony. Version 3.1.1. Smithsonian Institution, Washington DC.

  • Tamura, K. 1992. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol Biol Evol, 9, 814–825.

    CAS  PubMed  Google Scholar 

  • Thorpe, R S, McGregor, D P, and Cumming, A M. 1993. Molecular phylogeny of the Canary Island lacertids (Gallotia): mitochondrial DNA restriction fragment divergence in relation to sequence divergence and geological time. J Evol Biol, 6, 725–735.

    Article  Google Scholar 

  • Thorpe, R S, McGregor, D P, Cumming, A M, and Jordan, W C. 1994. DNA evolution and colonization sequence of island lizards in relation to geological history: mtDNA RFLP, cytochrome B, cytochrome oxidase, 12S rRNA and nuclear RAPD analysis. Evolution, 48, 230–240.

    Article  CAS  Google Scholar 

  • Wollaston, T V. 1864. Catalogue of Canarian Coleoptera. John van Voorst, London.

    Google Scholar 

  • Wu, C-I, and Li, W-H. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA, 82, 1741–1745.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Population Biology Sector, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

    Carlos Juan & Godfrey M Hewitt

  2. Departamento de Zoología, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain

    Pedro Oromi

Authors
  1. Carlos Juan
    View author publications

    Search author on:PubMed Google Scholar

  2. Pedro Oromi
    View author publications

    Search author on:PubMed Google Scholar

  3. Godfrey M Hewitt
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juan, C., Oromi, P. & Hewitt, G. Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences. Heredity 76, 392–403 (1996). https://doi.org/10.1038/hdy.1996.57

Download citation

  • Received: 22 August 1995

  • Issue date: 01 April 1996

  • DOI: https://doi.org/10.1038/hdy.1996.57

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • beetle
  • Canary Islands
  • colonization
  • Cytochrome Oxidase I
  • DNA sequence
  • phylogeny

This article is cited by

  • Morphological and genetic data suggest a complex pattern of inter-island colonisation and differentiation for mining bees (Hymenoptera: Anthophila: Andrena) on the Macaronesian Islands

    • Anselm Kratochwil
    • Robert J. Paxton
    • Martin Husemann

    Organisms Diversity & Evolution (2022)

  • Godfrey M Hewitt (1940–2013): highlights in Heredity from a career in evolutionary genetics

    • R A Nichols
    • R K Butlin
    • M W Bruford

    Heredity (2013)

  • A barcode of life database for the Cephalopoda? Considerations and concerns

    • Jan M. Strugnell
    • Annie R. Lindgren

    Reviews in Fish Biology and Fisheries (2007)

  • Polymorphism of mitochondrial DNA and infection with symbiotic cytoplasmic bacterium Wolbachia pipientis in mosquitoes of the Culex pipiens (Diptera, Culicidae) complex from Russia

    • E. V. Shaikevich
    • E. B. Vinogradova
    • I. A. Zakharov

    Russian Journal of Genetics (2005)

  • Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers

    • A. Gómez
    • S. C. González-Martínez
    • L. Gil

    Theoretical and Applied Genetics (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited