Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Extremely high levels of inbreeding in a natural population of the free-living wasp Ancistrocerus antilope (Hymenoptera: Vespidae: Eumeninae)
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 1996

Extremely high levels of inbreeding in a natural population of the free-living wasp Ancistrocerus antilope (Hymenoptera: Vespidae: Eumeninae)

  • Thomas W Chapman1 &
  • Steven C Stewart2 

Heredity volume 76, pages 65–69 (1996)Cite this article

  • 1191 Accesses

  • 24 Citations

  • Metrics details

Abstract

An isozyme study was conducted on a natural population of the solitary trap-nesting eumenid wasp, Ancistrocerus antilope (Panzer). The inbreeding coefficient was estimated to be 0.757 over seven loci from 322 diploid individuals collected from 108 trap nests. This inbreeding coefficient corresponds to a mixed-mating system with 91.3 per cent of matings occurring between brothers and sisters and the remaining matings occurring randomly. This is the highest inbreeding coefficient yet reported for a free-living Hymenopteran species. If such a high inbreeding level was present in the common ancestor of the Eumeninae and Vespinae, it may have facilitated the evolution of eusociality among the Vespinae.

Similar content being viewed by others

Completely predatory development is described in a braconid wasp

Article Open access 02 February 2022

The functional genetic architecture of egg-laying and live-bearing reproduction in common lizards

Article 07 October 2021

White-naped mangabeys’ viable insurance population within European Zoo Network

Article Open access 12 January 2021

Article PDF

References

  • Breden, F, and Wade, M J. 1991. “Runaway” social evolution: reinforcing selection for inbreeding and altruism. J Theor Biol, 153, 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, J M. 1982. The phylogenetic relationship and natural classification of the Vespoidea (Hymenoptera). Syst Entomol, 7, 11–38.

    Article  Google Scholar 

  • Carpenter, J M, and Cumming, J M. 1985. A character analysis of the North American potter wasps (Hymenoptera: Vespidae: Eumeninae). J Nat Hist, 19, 877–916.

    Article  Google Scholar 

  • Collins, J A, and Jennings, D T. 1987. Nesting height preferences of eumenid wasps (Hymenoptera: Eumenidae) that prey on spruce budworm (Lepidoptera: Tortricidae). Ann Entomol Soc Am, 80, 435–438.

    Article  Google Scholar 

  • Cooper, K W. 1953. Biology of eumenine wasps. I. The ecology, predation and competition of Ancistrocerus antilope (Panzer). Trans Am Ent Soc, 79, 13–35.

    Google Scholar 

  • Cowan, D P. 1978. Behavior, Inbreeding, and Parental Investment in Solitary Eumenid Wasps (Hymenoptera: Vespidae). Ph.D Thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Cowan, D P. 1979. Sibling mating in a hunting wasp: adaptive inbreeding? Science, 205, 1403–1405.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D P. 1983. Hypothesis on cell provisioning in eumenid wasps. Biol J Linn Soc, 20, 245–247.

    Article  Google Scholar 

  • Cowan, D P. 1986. Sexual behavior of eumenid wasps (Hymenoptera: Eumenidae). Proc Ent Soc Washington, 88, 531–541.

    Google Scholar 

  • Cowan, D P. 1991. The solitary and presocial Vespidae. In: Ross, K. G. and Matthews, R. W. (eds) The Social Biology of Wasps, pp. 33–73. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Crozier, R H. 1971. Heterozygosity and sex determination in haplo-diploidy. Am Nat, 105, 399–412.

    Article  Google Scholar 

  • Danks, H V. 1983. Differences between generations in the sex ratio of aculeate Hymenoptera. Evolution, 37, 414–416.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, W D. 1964. The genetical theory of social behaviour, I and II. J Theor Biol, 7, 1–52.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, W D. 1967. Natural selection of unusual sex ratios. Heredity, 22, 163.

    Google Scholar 

  • Hartl, D L. 1971. Some aspects of natural selection in arrhenotokous populations. Am Zool, 11, 309–325.

    Article  Google Scholar 

  • Herre, E A. 1985. Sex ratio adjustment in fig wasps. Science, 228, 896–898.

    Article  CAS  PubMed  Google Scholar 

  • Krombein, K V. 1967. Trap-nesting Wasps and Bees: Life Histories, Nests, and Associates. Smithsonian Press, Washington, DC.

    Google Scholar 

  • Kukul, P, and May, B. 1990. Diploid males in a primitively social bee, Lasiglossum (Dialictus) zephyrum (Hymenoptera: Halictidae). Evolution, 44, 1522–1528.

    Google Scholar 

  • Laidlaw, H H, and Page, R E, JR. 1986. Mating designs. In: Rinderer, T. E. (ed.) Bee Genetics and Breeding, pp. 323–344. Academic Press, New York.

    Chapter  Google Scholar 

  • Longair, R W. 1981. Sex ratio variations in xylophilous aculeate Hymenoptera. Evolution, 35, 597–600.

    Article  PubMed  Google Scholar 

  • Markert, C L, and Faulhaber, L. 1965. Lactate dehydrogenase isozyme patterns of fish. J Exp Zool, 159, 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Meizel, S, and Markert, G L. 1967. Malate dehydrogenase isozymes of the marine snail Ilyanassa obsoleta. Arch Biochem Biophys, 122, 753–765.

    Article  CAS  Google Scholar 

  • Michod, R E. 1980. Evolution of interactions in family-structured populations: mixed mating models. Genetics, 96, 275–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, U G, Eickwort, G C, and Aquadro, C F. 1994. DNA fingerprinting analysis of parent-offspring conflict in a bee. Proc Nat Acad Sci USA, 91, 5143–5147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer, L, and Owen, R E. 1990. Allozyme variation, linkage disequilibrium and diploid male production in a primitively social bee Augochlorella striata (Hymenoptera; Halictidae). Heredity, 65, 241–248.

    Article  Google Scholar 

  • Petters, R M, and Mettus, R V. 1980. Decreased diploid male viability in the parasitic wasp, Bracon hebetor. J Hered, 71, 353–356.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. Freeman, New York.

    Google Scholar 

  • Strassmann, J E, Hughes, C R, Turillazzi, S, Sols, C R, and Queller, D C. 1994. Genetic relatedness and incipient eusociality in stenogastrine wasps. Anim Behav, 48, 813–821.

    Article  Google Scholar 

  • Waage, J K. 1982. Sib-mating and sex ratio strategies in scelionid wasps. Ecol Entomol, 7, 103–112.

    Article  Google Scholar 

  • Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Wilson, E O. 1975. Sociobiology. Harvard University Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biological Sciences, Simon Fraser University, Burnaby, V5A 1S6, BC, Canada

    Thomas W Chapman

  2. Department of Botany, University of Guelph, Ontario, N1G 2W1, Canada

    Steven C Stewart

Authors
  1. Thomas W Chapman
    View author publications

    Search author on:PubMed Google Scholar

  2. Steven C Stewart
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, T., Stewart, S. Extremely high levels of inbreeding in a natural population of the free-living wasp Ancistrocerus antilope (Hymenoptera: Vespidae: Eumeninae). Heredity 76, 65–69 (1996). https://doi.org/10.1038/hdy.1996.8

Download citation

  • Received: 20 April 1995

  • Issue date: 01 January 1996

  • DOI: https://doi.org/10.1038/hdy.1996.8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • diploid males
  • isozymes
  • mixed-mating system
  • sib-mating
  • social behaviour
  • trap-nesting

This article is cited by

  • Influence of reproductive biology on establishment capacity in introduced Hymenoptera species

    • Joséphine Queffelec
    • Jeremy D. Allison
    • Bernard Slippers

    Biological Invasions (2021)

  • Single locus complementary sex determination in Hymenoptera: an "unintelligent" design?

    • Ellen van Wilgenburg
    • Gerard Driessen
    • Leo W Beukeboom

    Frontiers in Zoology (2006)

  • Single-locus complementary sex determination in the inbreeding wasp Euodynerus foraminatus Saussure (Hymenoptera: Vespidae)

    • J K Stahlhut
    • D P Cowan

    Heredity (2004)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited