Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Equilocality and heterogeneity of constitutive heterochromatin: in situ localization of two families of highly repetitive DNA in Dociostaurus genei (Orthoptera)
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 1996

Equilocality and heterogeneity of constitutive heterochromatin: in situ localization of two families of highly repetitive DNA in Dociostaurus genei (Orthoptera)

  • E Rodríguez Iñigo1,
  • B Fernández-Calvín2,
  • J Capel3 &
  • …
  • C García de la Vega1 

Heredity volume 76, pages 70–76 (1996)Cite this article

  • 518 Accesses

  • 12 Citations

  • Metrics details

Abstract

The chromosome complement of the grasshopper Dociostaurus genei is characterized by the presence of constitutive heterochromatin (C-bands) located in the centromeric regions of all the chromosomes and in the distal regions of some autosomes in the form of supernumerary segments. A sequence analysis was carried out to obtain information about the molecular characteristics of both heterochromatic regions. Two families of tandemly repetitive DNA (DgT2 and DgA3) from D. genei were cloned and characterized. Data obtained from in situ hybridization indicate that these families are located solely in the regions of constitutive heterochromatin. The DgT2 clone is representative of a family of sequences which mainly forms the centromeric C-bands in each chromosome of the complement. The DgA3 family is the major component of the distal C-bands (supernumerary segments) present in most of the autosomal pairs. These results show the existence in D. genei of two different families of repetitive DNA restricted to different chromosomal domains. We discuss these results in the light of the possible role of chromosomal disposition in the maintenance of the differences between heterochromatic DNA from different chromosomal regions and the homogenization of DNA sequences from equilocal chromosomal domains.

Similar content being viewed by others

Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats

Article 04 September 2021

Transcriptional regulation and chromatin dynamics at DNA double-strand breaks

Article Open access 13 October 2022

Challenges in classifying human chromosomal heteromorphisms using banding cytogenetics: From controversial guidelines to the need for a universal scoring system

Article Open access 24 October 2024

Article PDF

References

  • Arnold, M L, Appels, R, and Shaw, D D. 1986. The heterochromatin of grasshoppers from the Caledia captiva species complex. I. Sequence evolution and conservation in a highly repeated DNA family. Mol Biol Evol, 3, 29–43.

    CAS  Google Scholar 

  • Bella, J L, García De La Vega, C, López-Fernández, C, and Gosálvez, J. 1986. Changes in acridine orange binding and its use in the characterisation of hetero-chromatic regions. Heredity, 57, 79–83.

    Article  Google Scholar 

  • Brown, A K, and Wilmore, P J. 1974. Location of repetitious DNA in the chromosomes of the desert locust (Schistocerca gregaria). Chromosoma, 47, 379–383.

    Article  CAS  Google Scholar 

  • Feinberg, A P, and Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analyt Biochem, 132, 6–13.

    Article  CAS  Google Scholar 

  • Greilhuber, J, and Loidl, J. 1983. On regularities of C-banding patterns and their possible cause. In: Brandham, P. E. and Bennett, M. D. (eds) Kew Chromosome Conference II, P. 344. George Allen and Unwin, London.

    Google Scholar 

  • Hewitt, G M. 1979. Orthoptera Animal Cytogenetics 3, Insecta 1 Gebrüder Borntraeger, Stuttgart.

    Google Scholar 

  • John, B. 1983. The role of chromosome change in the evolution of orthopteroid insects. In: Sharma, A. K. and Sharma, A. (eds) Chromosomes in Evolution of Eukaryotic Groups, vol 1, pp. 1–110. CRC Press, Boca Raton, FL.

    Google Scholar 

  • John, B. 1988. The biology of heterochromatin. In: Verma, R. S. (ed.) Heterochromatin, pp. 1–147. Cambridge University Press, Cambridge.

    Google Scholar 

  • John, B, Appels, R, and Contreras, N. 1986. Population cytogenetics of Atractomorpha similis. II. Molecular characterization of the distal C-band polymorphisms. Chromosoma, 94, 45–58.

    Article  CAS  Google Scholar 

  • King, M, and John, B. 1980. Regularities and restrictions governing C-band variation in acridoid grasshoppers. Chromosoma, 76, 123–150.

    Article  Google Scholar 

  • López-Fernández, C, and Gosálvez, J. 1981. Differential staining of a heterochromatic zone in Arcyptera fusca (Orthoptera). Experientia, 37, 240.

    Article  Google Scholar 

  • López-León, M D, Neves, N, Schwarzacher, T, Heslop-Harrison, J S, (PAT), Hewitt, G M, and Camacho, J P M. 1994. Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res, 2, 87–92.

    Article  Google Scholar 

  • Pendas, A M, Moran, P, and Garcia-Vazquez, E. 1993. Ribosomal RNA genes are interspersed throughout a heterochromatic arm in Atlantic salmon. Cytogenet Cell Genet, 63, 128–130.

    Article  CAS  Google Scholar 

  • Rigby, P W Z, Dieckmann, M, Rhodes, C, and Berg, P. 1977. Labelling deoxyribonucleic acid to high specific activity in vitro by nick traslation with DNA polymerase. J Mol Biol, 113, 237–251.

    Article  CAS  Google Scholar 

  • Rodríguez Iñigo, E, Bella, J L, and García De La Vega, C. 1993. Heterochromatin differentiation between two species of the genus Dociostaurus (Orthoptera: Acrididae). Heredity, 70, 458–465.

    Article  Google Scholar 

  • Sambrook, J, Fritsch, E F, and Maniatis, T. 1989. Molecular Cloning A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sanger, F, Nicklen, S, and Coulson, A R. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74, 5463–5467.

    Article  CAS  Google Scholar 

  • Schweizer, D, and Loidl, J. 1987. A model for heterochromatin dispersion and the evolution of C band patterns. In: Stahl, A., Luciani, J. M. and Vagner-Capodano, A. M. (eds) Chromosomes Today, vol. 9, pp. 61–74. Allen & Unwin, London.

    Chapter  Google Scholar 

  • Schweizer, D, Mendelak, M, White, M J D, and Contreras, N. 1983. Cytogenetics of the parthenogenetic grasshopper Warramaba virgo and its bisexual relatives. X. Patterns of fluorescent banding. Chromosoma, 88, 227–236.

    Article  Google Scholar 

  • Schweizer, D, Loidl, J, and Hamilton, B. 1987. Heterochromatin and the phenomenon of chromosome banding. In: Hennig, W. (ed) Structure and Function of Eukaryotic Chromosomes, pp. 235–254. Springer, Berlin.

    Chapter  Google Scholar 

  • Wiegant, J, Nederiof, P M, Van Der Ploeg, M, Tanle, H J, and Raap, A K. 1991. In situ hybridization with fluoresceinated DNA. Nucl Acids Res, 19, 3277–3241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Biología, Unidad de Genética, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049

    E Rodríguez Iñigo & C García de la Vega

  2. Departamento de Biotecnología, Unidad de Genética, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, 28040

    B Fernández-Calvín

  3. Laboratorio de Biología Molecular y Virología Vegetal, C.I.T.-INIA, Madrid, 28040, Spain

    J Capel

Authors
  1. E Rodríguez Iñigo
    View author publications

    Search author on:PubMed Google Scholar

  2. B Fernández-Calvín
    View author publications

    Search author on:PubMed Google Scholar

  3. J Capel
    View author publications

    Search author on:PubMed Google Scholar

  4. C García de la Vega
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iñigo, E., Fernández-Calvín, B., Capel, J. et al. Equilocality and heterogeneity of constitutive heterochromatin: in situ localization of two families of highly repetitive DNA in Dociostaurus genei (Orthoptera). Heredity 76, 70–76 (1996). https://doi.org/10.1038/hdy.1996.9

Download citation

  • Received: 20 April 1995

  • Issue date: 01 January 1996

  • DOI: https://doi.org/10.1038/hdy.1996.9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • constitutive heterochromatin
  • insect cytogenetics
  • satellite DNA

This article is cited by

  • The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata

    • Diogo Milani
    • Érica Ramos
    • Diogo Cavalcanti Cabral-de-Mello

    BMC Genetics (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited