Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Chromosomal distribution of the 412 retrotransposon in natural populations of Drosophila simulans
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1997

Chromosomal distribution of the 412 retrotransposon in natural populations of Drosophila simulans

  • C Hoogland1,
  • C Vieira1 &
  • C Biémont1 

Heredity volume 79, pages 128–134 (1997)Cite this article

  • 625 Accesses

  • 3 Citations

  • Metrics details

Abstract

The insertion site localization of the 412 retrotransposable element was analysed by in situ hybridization to the polytene chromosomes of 57 individual genomes from 25 natural populations of Drosophila simulans. The 412 insertion sites along the chromosomes show a tendency to aggregate in the distal and proximal ends of the 2R arm, and in several local regions along the 3R arm. The distribution of the 412 insertion sites, weighted by DNA content, along the chromosome arms reveals an overall tendency for the site number to increase from the middle of the arm to the base and tip, with a decrease at the tips, especially pronounced for the X chromosome. Such a distribution differs slightly from that of D. melanogaster, which globally shows an increase of the 412 site number from base to tip of the chromosome arms, indicating differing behaviour of the 412 element in the two species. These results are discussed in connection with the recombination rate along the chromosome arms.

Similar content being viewed by others

Predicting recombination suppression outside chromosomal inversions in Drosophila melanogaster using crossover interference theory

Article 01 February 2023

Order and stochasticity in the folding of individual Drosophila genomes

Article Open access 04 January 2021

The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids

Article Open access 03 January 2023

Article PDF

References

  • Ashburner, M. 1989. Drosophila A Laboratory Handbook. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Aulard, S, Lemeunier, F, Hoogland, C, Chaminade, N, Brookfield, J F, and Biémont, C. 1995. Chromosomal distribution and population dynamics of the 412 retro-transposon in a natural population of Drosophila melanogaster. Chromosoma, 103, 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Biémont, C. 1992. Population genetics of transposable DNA elements. A Drosophila point of view. Genetica, 86, 67–84.

    Article  PubMed  Google Scholar 

  • Biémont, C. 1994. Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M' strain of Drosophila melanogaster. J Mol Evol, 39, 466–472.

    Article  PubMed  Google Scholar 

  • Biémont, C, Lemeunier, F, Garcia Guerreiro, M P, Brookfield, J F, Gautier, C, Aulard, S, and Pasyu-Kova, E G. 1994. Population dynamics of the copia, mdgl, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. Genet Res, 63, 197–212.

    Article  PubMed  Google Scholar 

  • Bolshakov, V N, Zharkikh, A A, and Zhimulev, I F. 1985. Intercalary heterochromatin in Drosophila. II. Heterochromatic features in relation to local DNA content along the polytene chromosomes of Drosophila melanogaster. Chromosoma, 92, 200–208.

    Article  CAS  Google Scholar 

  • Caggese, C, Pimpinelli, S, Barsanti, P, and Caizzi, R. 1995. The distribution of the transposable element Bari-1 in the Drosophila melanogaster and Drosophla simulans genomes. Genetica 96, 269–283.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, and Charleswoth, D. 1983. The population dynamics of transposable elements. Genet Res, 42, 1–27.

    Article  Google Scholar 

  • Charlesworth, B, and Langley, C H. 1989. The population genetics of Drosophila transposable elements. Ann Rev Genet, 23, 251–287.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, and Lapid, A. 1989. A Study of 10 transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet Res, 54, 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, Lapid, A, and Canada, D. 1992a. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genet Res, 60, 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, Lapid, A, and Canada, D. 1992b. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogster. II. Inferences on the nature of selection against elements. Genet Res, 60, 115–130.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, Jarne, P, and Assimacopoulos, S. 1994a. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet Res, 64, 183–197.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, Sniegowski, P, and Stephan, W. 1994b. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Csink, A K, and McDonald, J F. 1990. Copia expression is variable among natural populations of Drosophila. Genetics, 126, 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowsett, A P, and Young, M W. 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc Natl Acad Sci USA, 79, 4570–4574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan, D J, Rubin, G M, Young, M W, and Hogness, D C. 1978. Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symp Quant Biol, 42, 1053–1064.

    Article  CAS  PubMed  Google Scholar 

  • Hoogland, C, and Biémont, C. 1996. Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number. Genetics, 144, 197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, N L, and Brookfield, J F Y. 1983. Transposable elements in Mendelian populations. III. Statistical results. Genetics, 104, 485–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, N L, Darden, T, and Langley, C H. 1985. Evolution and extinction of transposable elements in Mendelian populations. Genetics, 109, 459–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, K, and Kidwell, M G. 1994. Differences in P element population dynamics between the sibling species Drosophila melanogaster and Drosophila simulans. Genet Res, 63, 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Langley, C H, Brookfield, J F Y, and Kaplan, N. 1983. Transposable elements in Mendelian populations. I. A theory. Genetics, 104, 457–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langley, C H, Montgomery, E A, Hudson, R, Kaplan, N, and Charlesworth, B. 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet Res, 52, 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Lefevre, G. 1976. A photographic representation and interpretation of polytene chromosomes of Drosophila melanogaster salivary glands. In: Ashburner, M. and Novitski, E. (eds) The Genetics and Biology of Drosophila, 1A, pp. 31–66. Academic Press, London.

    Google Scholar 

  • Lehmann, E L. 1975. Nonparametrics Statistical Methods Based on Ranks. McGraw Hill, New York.

    Google Scholar 

  • Leibovitch, B, Aglushkova, I V, Pasyukova, E G, Belyaeva, E S, and Gvozdev, V A. 1992. Comparative analysis of retrotransposon localization and mobility in sibling species Drosophila simulans and Drosophila melanogaster. Genetika, 28, 85–97.

    Google Scholar 

  • Lindsley, D L, and Sandler, L. 1977. The genetic analysis of meiosis in female Drosophila melanogaster. Phil Trans R Soc B, 277, 295–312.

    Article  CAS  PubMed  Google Scholar 

  • Miklos, G L G, Yamamoto, M T, Davies, J, and Pirrotta, V. 1988. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA, 85, 2051–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery, E A, Charlesworth, B, and Langley, C H. 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res, 49, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Nuzhdin, S V. 1995. The distribution of transposable elements on X chromosomes from a natural population of Drosophila simulans. Genet Res, 66, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Sniegowski, P, and Charlesworth, B. 1984. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics, 137, 815–827.

    Google Scholar 

  • Sorsa, V. 1988. Chromosome maps of Drosophila, II. CRC Press Inc., Boca Raton. FL.

  • Stephan, W, and Langley, C H. 1992. Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132, 567–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • True, J R, Mercer, J M, and Laurie, C C. 1996. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics, 142, 507–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaury, C, Bucheton, A, and Pelisson, A. 1989. The β-heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Vieira, C, and Biémont, C. 1996a. Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J Mol Evol, 42, 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Vieira, C, and Biémont, C. 1996b. Selection against transposable element insertions in D. simulans and D. melanogaster. Genet Res, 68, 9–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Biométrie, Génétique, Biologie des populations, UMR C.N.R.S. 5558, Université Lyon 1, Villeurbanne Cedex, 69622, France

    C Hoogland, C Vieira & C Biémont

Authors
  1. C Hoogland
    View author publications

    Search author on:PubMed Google Scholar

  2. C Vieira
    View author publications

    Search author on:PubMed Google Scholar

  3. C Biémont
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to C Biémont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogland, C., Vieira, C. & Biémont, C. Chromosomal distribution of the 412 retrotransposon in natural populations of Drosophila simulans. Heredity 79, 128–134 (1997). https://doi.org/10.1038/hdy.1997.135

Download citation

  • Received: 22 May 1996

  • Issue date: 01 August 1997

  • DOI: https://doi.org/10.1038/hdy.1997.135

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chromosomal distribution
  • Drosophila simulans
  • natural populations
  • retrotransposon

This article is cited by

  • The LTR retrotransposon micropia in the cardini group of Drosophila (Diptera: Drosophilidae): a possible case of horizontal transfer

    • Juliana Cordeiro
    • Lizandra J. Robe
    • Vera L. S. Valente

    Genetica (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited