Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic variation within and between populations of Posidonia australis, a hydrophilous, clonal seagrass
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1997

Genetic variation within and between populations of Posidonia australis, a hydrophilous, clonal seagrass

  • Michelle Waycott1 nAff2,
  • Sidney H James1 &
  • Diana I Walker1 

Heredity volume 79, pages 408–417 (1997)Cite this article

  • 1006 Accesses

  • 28 Citations

  • Metrics details

Abstract

Allozyme diversity was surveyed at 15 loci across 22 populations of the hydrophilous seagrass Posidonia australis (Hook. f). Substantial genetic variation was detected (HT = 0.311) with a high proportion of this variation partitioned between populations (GST = 0.623). The high value of GST is attributed to large geographical distances between many of the populations and several of the extreme north-western populations having fixed homozygous genotypes. Southwestern populations of P. australis were the most variable and these correlate with the highest species diversity in this genus. Intermediate levels of genetic diversity are observed in P. australis when compared with other hydrophilous angiosperms. Average gene diversity values for hydrophilous taxa surveyed to date indicate lower HT and higher GST values than an average reported for 468 plant taxa. Patterns of genetic variability in different regions of the distribution of P. australis may reflect past evolutionary diversification into novel environments and subsequent dispersal following the rifting of Australia from Antarctica in the early Tertiary.

Similar content being viewed by others

Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

Article Open access 19 February 2021

Genetic diversity and structure lag the effects of contemporary environmental changes in a platypus meta-population

Article 06 June 2025

Evidence of local adaptation despite strong drift in a Neotropical patchily distributed bromeliad

Article 05 May 2021

Article PDF

References

  • Alberte, R S, Suba, G K, Procaccini, G, Zimmerman, R C, and Fain, S R. 1994. Assessment of genetic diversity of seagrass populations using DNA fingerprinting: implications for population stability and management. Proc Natl Acad Sci USA, 91, 1049–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, S C H, and Shore, J S. 1989. Isozyme variation in colonizing plants. In: Soltis, D. E. and Soltis, P. S. (eds) Isozymes in Plant Biology, pp. 106–126. Dioscor-ides Press, Portland, OR.

    Chapter  Google Scholar 

  • Barrett, S C H, Eckert, C G, and Husband, B C. 1993. Evolutionary processes in aquatic plant populations. Aquat Bot, 44, 105–145.

    Article  Google Scholar 

  • Cambridge, M L, and Kuo, J. 1979. Two new species of seagrass from Australia, Posidonia sinuosa and P. angustifolia (Posidoniaceae). Aquat Bot, 6, 307–328.

    Article  Google Scholar 

  • Cambridge, M L, and McComb, A J. 1984. The loSS of seagrass in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot, 21, 229–243.

    Article  Google Scholar 

  • Cox, P A. 1993. Water-pollinated plants Sci Am, 269(4), 50–56.

    Article  Google Scholar 

  • Eckert, C G, and Barrett, S C H. 1993. Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae). Am J Bot, 80, 1175–1182.

    Article  Google Scholar 

  • Ellstrand, N C, and Roose, M. 1987. Patterns of genotypic diversity in clonal plant species. Am I Bot, 74, 123–131.

    Article  Google Scholar 

  • Hamrick, J L, and Godt, M J W. 1989. Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp. 43–63. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Kirkman, H. 1985. Community structure in seagrasses in southern Western Australia. Aquat Bot, 21, 363–375.

    Article  Google Scholar 

  • Kirkman, H, and Kuo, J. 1990. Pattern and process in southern Australian seagrasses. Aquat Bot, 37, 367–382.

    Article  Google Scholar 

  • Kirkman, H, and Walker, D I. 1989. Regional studies-Western Australian seagrasses. In: Larkum, A. W. D., McComb, A J, and Shepherd, S A. (eds) Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region, pp. 157–181. Elsevier, Amsterdam.

    Google Scholar 

  • Kuo, J. 1982. Notes on the biology of Australian seagrasses. Proc Linn Soc New South Wales, 106, 225–245.

    Google Scholar 

  • Kuo, J, and Cambridge, M L. 1984. A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses Aquat Bot, 20, 267–295.

    Article  Google Scholar 

  • Larkum, A W D, and Den Hartog, C. 1989. Evolution and biogeography of seagrasses. In: Larkum, A. W. D., McComb, A. J. and Shepherd, S. A. (eds) Biology of the Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region, pp. 112–156. Elsevier, Amsterdam.

    Google Scholar 

  • Laushman, R H. 1993. Population genetics of hydrophilous angiosperms. Aquat Bot, 44, 147–158.

    Article  Google Scholar 

  • Les, D H. 1988. Breeding systems, population structure and evolution in hydrophylous angiosperms. Ann Mo Bot Card, 75, 819–835.

    Article  Google Scholar 

  • Les, D H. 1991. Genetic diversity in the monoecious hydrophile Ceratophyllum (Ceratophyllaceae). Am J Bot, 78, 1070–1082.

    Article  Google Scholar 

  • Lokker, C, Susko, D, Lovett-Doust, L, and Lovett-Doust, J. 1994. Population genetic structure of Vallis-neria americana, a dioecious clonal macrophyte. Am J Bot, 81, 1004–1012.

    Article  Google Scholar 

  • McMillan, C. 1981. Morphological variation and isozymes under laboratory conditions in Cymodocea serrulata. Aquat Bot, 10, 356–370.

    Article  Google Scholar 

  • McMillan, C. 1982. Isozymes in seagrasses. Aquat Bot, 14, 231–243.

    Article  Google Scholar 

  • McMillan, C. 1991. Isozyme patterning in marine spermatophytes. In: Triest, L. (ed.) Isozymes in Water Plants, pp. 193–200. National Botanic Garden of Belgium, Meise.

    Google Scholar 

  • Moran, G F, and Hopper, S H. 1983. Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Aust J Bot, 31, 161–172.

    Article  Google Scholar 

  • Murawski, D A, and Hamrick, J L. 1990. Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae. Am J Bot, 77, 1201–1208.

    Article  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orth, R J, and Moore, K A. 1983. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science, 222, 51–53.

    Article  CAS  PubMed  Google Scholar 

  • Pettitt, J, Ducker, S, and Knox, B. 1981. Submarine pollination Sci Am, 244(3), 92–101.

    Article  Google Scholar 

  • Quilty, P O. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. In: Hill, R. S. (ed.) History of the Australian Vegetation: Cretaceous to Recent, pp. 14–43. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ritland, K. 1989. Genetic differentiation, diversity, and inbreeding in the mountain monkeyflower (Mimulus caespitosus) of the Washington Cascades. Can J Bot, 67, 2017–2024.

    Article  Google Scholar 

  • Sidäk, Z. 1967. Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Ass, 62, 626–633.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1981. BIOSYS-K a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and system-atics. J Hered, 72, 281–283.

    Article  Google Scholar 

  • Triest, L. 1991. Enzyme polymorphism and its relationships to biological features in aquatic plants. In: Triest, L. (ed.) Isozymes in Water Plants, pp. 201–241. National Botanic Garden of Belgium, Meise.

    Google Scholar 

  • Wain, R P, Haller, W T, and Martin, D F. 1985. Isozymes in studies of aquatic plants. J Aquat PI Manag, 23, 42–45.

    CAS  Google Scholar 

  • Walker, D I. 1989. Regional studies-Seagrass in Shark Bay, the foundations of an ecosystem. In: Larkum, A. W. D., McComb, A. J. and Shepherd, S. A. (eds) Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region, pp. 182–210. Elsevier, Amsterdam.

    Google Scholar 

  • Walker, D I, and McComb, A J. 1992. Seagrass degradation in Australian coastal waters. Mar Poll Bull, 25, 191–195.

    Article  Google Scholar 

  • Waycott, M. 1995. Assessment of genetic variation and clonality in the seagrass Posidonia australis using RAPD and allozyme analysis. Mar Ecol Prog Ser, 116, 289–295.

    Article  CAS  Google Scholar 

  • Waycott, M, and Les, D H. 1996. An integrated approach to the evolutionary study of seagrasses. In: Kuo, J., Phillips, R. C, Walker, D. I. and Kirkman, H. (eds) Seagrass Biology: Proceedings of an International Workshop, Rottnest Island, Western Australia, 25–29 January 1996, pp. 71–78. Faculty of Science, The University of Western Australia, Perth.

    Google Scholar 

  • Waycott, M, and Sampson, J F. 1997. The mating system of an hydrophilous angiosperm Posidonia australis (Popsidoniaceae) Am J Bot, 84, 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Waycott, M, Walker, D I, and James, S H. 1996. Genetic uniformity in a dioecious seagrass, Amphibolis antarctica. Heredity. 76, 528–585.

    Article  Google Scholar 

  • West, R. 1990. Depth-related structural and morphological variations in an Australian Posidonia seagrass bed. Aquat Bot, 36, 153–166.

    Article  Google Scholar 

Download references

Author information

Author notes
  1. Michelle Waycott

    Present address: Department of Tropical Environment Studies and Geography, James Cook University, Townsville, Qld, 4811, Australia

Authors and Affiliations

  1. Department of Botany, The University of Western Australia, Nedlands, 6907, Australia

    Michelle Waycott, Sidney H James & Diana I Walker

Authors
  1. Michelle Waycott
    View author publications

    Search author on:PubMed Google Scholar

  2. Sidney H James
    View author publications

    Search author on:PubMed Google Scholar

  3. Diana I Walker
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Michelle Waycott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waycott, M., James, S. & Walker, D. Genetic variation within and between populations of Posidonia australis, a hydrophilous, clonal seagrass. Heredity 79, 408–417 (1997). https://doi.org/10.1038/hdy.1997.175

Download citation

  • Received: 18 November 1996

  • Issue date: 01 October 1997

  • DOI: https://doi.org/10.1038/hdy.1997.175

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • clonal
  • evolution
  • hydrophily
  • seagrass

This article is cited by

  • Genetic diversity in threatened Posidonia australis seagrass meadows

    • Suzanna M. Evans
    • Elizabeth A. Sinclair
    • Adriana Vergés

    Conservation Genetics (2014)

  • The different morphs of Undaria pinnatifida (Phaeophyceae, Laminariales) in Peter the Great Bay (Sea of Japan) are phenotypic variants: direct evidence

    • Svetlana Y. Shibneva
    • Anna V. Skriptsova
    • Shao Jun Pang

    Journal of Applied Phycology (2013)

  • Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P. sinuosa

    • E. A. Sinclair
    • J. Anthony
    • G. A. Kendrick

    Conservation Genetics Resources (2009)

  • Clonal diversity of Clintonia udensis Trautv. et Mey. populations and its correlation with ecological factors

    • YiLing Wang
    • Xin Li
    • GuiFang Zhao

    Science in China Series C: Life Sciences (2008)

  • Genomic coalescence in a population of Laxmannia sessiliflora (Angiospermae, Anthericaceae): an association of lethal polymorphism, self-pollination and chromosome number reduction

    • Sidney H James
    • Greg K Keighery
    • Michelle Waycott

    Heredity (1999)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited