Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Detection of QTL × environment interaction in maize by a least squares interval mapping method
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1997

Detection of QTL × environment interaction in maize by a least squares interval mapping method

  • Mirella Sari-Gorla1,
  • Tadeusz Calinski2,
  • Zygmunt Kaczmarek3 &
  • …
  • Pawel Krajewski3 

Heredity volume 78, pages 146–157 (1997)Cite this article

  • 518 Accesses

  • 42 Citations

  • Metrics details

Abstract

In order to detect the linkage disequilibrium existing between alleles at a marker locus and alleles of a linked quantitative trait locus (QTL), a least squares interval mapping approach using multiple regression on marker data has been developed. It allows inclusion in the model of the parameters describing the experimental and environmental situation, so that the QTL × environment effects can be tested. The method can also be applied using any general statistical package to data for which the usual normal distribution assumption does not hold, and where the use of weighted approaches is therefore required. A method to cope with the frequent problem in biological experiments of missing data was also used. The analysis was performed on data concerning two components of maize pollen competitive ability, obtained from an experiment over 2 years. The method, in comparison with the traditional single marker approach, has been shown to be more powerful in detecting QTLs and more precise in determining their map position. The analysis has identified QTLs expressed across years, putative QTLs with major effects and QTLs accounting for genotype × environment interaction.

Similar content being viewed by others

Discovery and validation of SSR marker-based QTL governing fresh pod yield in dolichos bean (Lablab purpureus L. Sweet)

Article Open access 12 March 2025

Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.)

Article Open access 17 October 2023

Major QTL confer race-nonspecific resistance in the co-evolved Cronartium quercuum f. sp. fusiforme–Pinus taeda pathosystem

Article 25 June 2021

Article PDF

References

  • Beavis, W D, Smith, O S, Grant, D, and Fincher, R. 1994. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 34, 882–896.

    Article  Google Scholar 

  • Bubeck, D M, Goodman, M M, Beavis, W D, and Grant, D. 1993. Quantitative trait loci controlling resistance to grey leaf spot in maize. Crop Sci, 33, 838–847.

    Article  Google Scholar 

  • Burr, B, and Burr, F A. 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet, 7, 55–60.

    CAS  PubMed  Google Scholar 

  • Burr, B, Burr, F A, Thompson, K H, Albertson, M C, and Stuber, C W. 1988. Gene mapping with recombinant inbreds in maize. Genetics, 118, 519–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, M D, Stuber, C W, and Wendel, J F. 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 116, 113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genstat 5 Committee, 1993. Genstat 5 Release 3 Reference Manual. Clarendon Press, Oxford.

  • Grizzle, J E, Starmer, C F, and Koch, G G. 1969. Analysis of categorical data by linear models. Biometrics, 25, 489–504.

    Article  CAS  PubMed  Google Scholar 

  • Guffy, R D, Stuber, C W, and Edwards, M D. 1989. Dissecting and enhancing heterosis in corn using molecular markers. In: Proc 25th Illinois Corn Breeders School, pp. 99–120. Champaign, IL.

    Google Scholar 

  • Haldane, J B S, and Waddington, C H. 1931. Inbreeding and linkage. Genetics, 16, 357–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haley, C S, and Knott, S A. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, P M, Liu, B H, Knapp, S J, Chen, F, Jones, B, and Blake, T. et al. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet, 87, 392–401.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, Y, and Tamhane, A C. 1987. Multiple Comparison Procedures. Wiley, New York.

    Book  Google Scholar 

  • Jansen, R C. 1993. Interval mapping of multiple quantitative trait loci. Genetics, 135, 205–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, R C. 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics, 138, 871–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, R C, and Stam, P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136, 1447–1455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, R C, Van Ooijen, J W, Stam, P, Lister, C, and Dean, C. 1995. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 91, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S J, Bridges, W C, and Birked, D. 1990. Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet, 79, 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Koch, G G, Landis, J R, Freeman, J L, and Freeman, D H, Jr. 1977. A general methodology for the analysis of experiments with repeated measurement of categorical data. Biometrics, 33, 133–158.

    Article  CAS  PubMed  Google Scholar 

  • Koester, R P, Sisco, P H, and Stuber, C W. 1993. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci, 33, 1209–1216.

    Article  Google Scholar 

  • Lander, E S, and Bostein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, O, and Curnow, R N. 1994. Missing markers when estimating quantitative trait loci using regression mapping. Heredity, 73, 198–206.

    Article  Google Scholar 

  • Paterson, A H, Damon, S, Hewitt, J D, Zamir, D, Rabinowitch, H D, and Lincoln, S E. et al. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 127, 181–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson, A H, Lander, E S, Hewitt, J D, Peterson, S, Lincoln, S E, and Tanksley, S D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335, 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Rodolphe, F, and Lefort, M. 1993. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 134, 1277–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sari-Gorla, M, Pé, M E, Mulcahy, D L, and Ottaviano, E. 1992. Genetic dissection of pollen competitive ability in maize. Heredity, 69, 423–430.

    Article  Google Scholar 

  • Sari-Gorla, M, Binelli, G, Pé, M E, and Villa, M. 1995. Detection of genetic factors controlling pollen-style interaction in maize. Heredity, 74, 62–69.

    Article  Google Scholar 

  • Schön, C C, Melchinger, A E, Boppenmaier, J, Brunklaus-Jung, E, Herrmann, R G, and Seitzer, J F. 1994. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 34, 378–389.

    Article  Google Scholar 

  • Simpson, S P. 1989. Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet, 77, 815–819.

    Article  CAS  PubMed  Google Scholar 

  • Soller, M, and Beckman, J S. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet, 67, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Soller, M, Genizi, A, and Brody, T. 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 47, 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Stuber, C W, Lincoln, S E, Wolff, D W, Helentjaris, T, and Lander, E S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132, 823–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weisberg, S. 1985. Applied Linear Regression, 2nd edn. Wiley, New York.

    Google Scholar 

  • Weller, J I, Soller, M, and Brody, T. 1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics, 118, 329–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr, B E, Dudley, J W, Chojecki, M A, Maroof, S, and Mowers, R P. 1992. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid. Theor Appl Genet, 83, 903–911.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Z-B. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 90, 10972–10976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Z-B. 1994. Precision mapping of quantitative trait loci. Genetics, 136, 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics and Microbiology, University of Milan, Via Celoria 26, Milan, 20133, Italy

    Mirella Sari-Gorla

  2. Department of Mathematical and Statistical Methods, Agricultural University of Poznan, Poland

    Tadeusz Calinski

  3. Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland

    Zygmunt Kaczmarek & Pawel Krajewski

Authors
  1. Mirella Sari-Gorla
    View author publications

    Search author on:PubMed Google Scholar

  2. Tadeusz Calinski
    View author publications

    Search author on:PubMed Google Scholar

  3. Zygmunt Kaczmarek
    View author publications

    Search author on:PubMed Google Scholar

  4. Pawel Krajewski
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Mirella Sari-Gorla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sari-Gorla, M., Calinski, T., Kaczmarek, Z. et al. Detection of QTL × environment interaction in maize by a least squares interval mapping method. Heredity 78, 146–157 (1997). https://doi.org/10.1038/hdy.1997.22

Download citation

  • Received: 12 February 1996

  • Issue date: 01 February 1997

  • DOI: https://doi.org/10.1038/hdy.1997.22

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • interval mapping
  • maize
  • pollen
  • QTL × environment interaction
  • RFLP
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited